ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummac Unicode version

Theorem nummac 8471
Description: Perform a multiply-add of two decimal integers  M and  N against a fixed multiplicand  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
nummac.8  |-  P  e. 
NN0
nummac.9  |-  F  e. 
NN0
nummac.10  |-  G  e. 
NN0
nummac.11  |-  ( ( A  x.  P )  +  ( C  +  G ) )  =  E
nummac.12  |-  ( ( B  x.  P )  +  D )  =  ( ( T  x.  G )  +  F
)
Assertion
Ref Expression
nummac  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem nummac
StepHypRef Expression
1 numma.1 . . . . 5  |-  T  e. 
NN0
21nn0cni 8251 . . . 4  |-  T  e.  CC
3 numma.2 . . . . . . . . 9  |-  A  e. 
NN0
43nn0cni 8251 . . . . . . . 8  |-  A  e.  CC
5 nummac.8 . . . . . . . . 9  |-  P  e. 
NN0
65nn0cni 8251 . . . . . . . 8  |-  P  e.  CC
74, 6mulcli 7090 . . . . . . 7  |-  ( A  x.  P )  e.  CC
8 numma.4 . . . . . . . 8  |-  C  e. 
NN0
98nn0cni 8251 . . . . . . 7  |-  C  e.  CC
10 nummac.10 . . . . . . . 8  |-  G  e. 
NN0
1110nn0cni 8251 . . . . . . 7  |-  G  e.  CC
127, 9, 11addassi 7093 . . . . . 6  |-  ( ( ( A  x.  P
)  +  C )  +  G )  =  ( ( A  x.  P )  +  ( C  +  G ) )
13 nummac.11 . . . . . 6  |-  ( ( A  x.  P )  +  ( C  +  G ) )  =  E
1412, 13eqtri 2076 . . . . 5  |-  ( ( ( A  x.  P
)  +  C )  +  G )  =  E
157, 9addcli 7089 . . . . . 6  |-  ( ( A  x.  P )  +  C )  e.  CC
1615, 11addcli 7089 . . . . 5  |-  ( ( ( A  x.  P
)  +  C )  +  G )  e.  CC
1714, 16eqeltrri 2127 . . . 4  |-  E  e.  CC
182, 17, 11subdii 7476 . . 3  |-  ( T  x.  ( E  -  G ) )  =  ( ( T  x.  E )  -  ( T  x.  G )
)
1918oveq1i 5550 . 2  |-  ( ( T  x.  ( E  -  G ) )  +  ( ( T  x.  G )  +  F ) )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
20 numma.3 . . 3  |-  B  e. 
NN0
21 numma.5 . . 3  |-  D  e. 
NN0
22 numma.6 . . 3  |-  M  =  ( ( T  x.  A )  +  B
)
23 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
2417, 11, 15subadd2i 7362 . . . . 5  |-  ( ( E  -  G )  =  ( ( A  x.  P )  +  C )  <->  ( (
( A  x.  P
)  +  C )  +  G )  =  E )
2514, 24mpbir 138 . . . 4  |-  ( E  -  G )  =  ( ( A  x.  P )  +  C
)
2625eqcomi 2060 . . 3  |-  ( ( A  x.  P )  +  C )  =  ( E  -  G
)
27 nummac.12 . . 3  |-  ( ( B  x.  P )  +  D )  =  ( ( T  x.  G )  +  F
)
281, 3, 20, 8, 21, 22, 23, 5, 26, 27numma 8470 . 2  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  ( E  -  G
) )  +  ( ( T  x.  G
)  +  F ) )
292, 17mulcli 7090 . . . . 5  |-  ( T  x.  E )  e.  CC
302, 11mulcli 7090 . . . . 5  |-  ( T  x.  G )  e.  CC
31 npcan 7283 . . . . 5  |-  ( ( ( T  x.  E
)  e.  CC  /\  ( T  x.  G
)  e.  CC )  ->  ( ( ( T  x.  E )  -  ( T  x.  G ) )  +  ( T  x.  G
) )  =  ( T  x.  E ) )
3229, 30, 31mp2an 410 . . . 4  |-  ( ( ( T  x.  E
)  -  ( T  x.  G ) )  +  ( T  x.  G ) )  =  ( T  x.  E
)
3332oveq1i 5550 . . 3  |-  ( ( ( ( T  x.  E )  -  ( T  x.  G )
)  +  ( T  x.  G ) )  +  F )  =  ( ( T  x.  E )  +  F
)
3429, 30subcli 7350 . . . 4  |-  ( ( T  x.  E )  -  ( T  x.  G ) )  e.  CC
35 nummac.9 . . . . 5  |-  F  e. 
NN0
3635nn0cni 8251 . . . 4  |-  F  e.  CC
3734, 30, 36addassi 7093 . . 3  |-  ( ( ( ( T  x.  E )  -  ( T  x.  G )
)  +  ( T  x.  G ) )  +  F )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
3833, 37eqtr3i 2078 . 2  |-  ( ( T  x.  E )  +  F )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
3919, 28, 383eqtr4i 2086 1  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1259    e. wcel 1409  (class class class)co 5540   CCcc 6945    + caddc 6950    x. cmul 6952    - cmin 7245   NN0cn0 8239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-sub 7247  df-inn 7991  df-n0 8240
This theorem is referenced by:  numma2c  8472  numaddc  8474  nummul1c  8475  decmac  8478
  Copyright terms: Public domain W3C validator