ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1lem Unicode version

Theorem odd2np1lem 11569
Description: Lemma for odd2np1 11570. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
Distinct variable groups:    k, N    n, N

Proof of Theorem odd2np1lem
Dummy variables  j  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2149 . . . 4  |-  ( j  =  0  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  0 ) )
21rexbidv 2438 . . 3  |-  ( j  =  0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  0 ) )
3 eqeq2 2149 . . . 4  |-  ( j  =  0  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  0 ) )
43rexbidv 2438 . . 3  |-  ( j  =  0  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  0 ) )
52, 4orbi12d 782 . 2  |-  ( j  =  0  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  0  \/  E. k  e.  ZZ  ( k  x.  2 )  =  0 ) ) )
6 eqeq2 2149 . . . . 5  |-  ( j  =  m  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  m ) )
76rexbidv 2438 . . . 4  |-  ( j  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  m ) )
8 oveq2 5782 . . . . . . 7  |-  ( n  =  x  ->  (
2  x.  n )  =  ( 2  x.  x ) )
98oveq1d 5789 . . . . . 6  |-  ( n  =  x  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  x )  +  1 ) )
109eqeq1d 2148 . . . . 5  |-  ( n  =  x  ->  (
( ( 2  x.  n )  +  1 )  =  m  <->  ( (
2  x.  x )  +  1 )  =  m ) )
1110cbvrexv 2655 . . . 4  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  m  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m )
127, 11syl6bb 195 . . 3  |-  ( j  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m ) )
13 eqeq2 2149 . . . . 5  |-  ( j  =  m  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  m ) )
1413rexbidv 2438 . . . 4  |-  ( j  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  m ) )
15 oveq1 5781 . . . . . 6  |-  ( k  =  y  ->  (
k  x.  2 )  =  ( y  x.  2 ) )
1615eqeq1d 2148 . . . . 5  |-  ( k  =  y  ->  (
( k  x.  2 )  =  m  <->  ( y  x.  2 )  =  m ) )
1716cbvrexv 2655 . . . 4  |-  ( E. k  e.  ZZ  (
k  x.  2 )  =  m  <->  E. y  e.  ZZ  ( y  x.  2 )  =  m )
1814, 17syl6bb 195 . . 3  |-  ( j  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. y  e.  ZZ  ( y  x.  2 )  =  m ) )
1912, 18orbi12d 782 . 2  |-  ( j  =  m  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/  E. y  e.  ZZ  ( y  x.  2 )  =  m ) ) )
20 eqeq2 2149 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
2120rexbidv 2438 . . 3  |-  ( j  =  ( m  + 
1 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
22 eqeq2 2149 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  ( m  +  1 ) ) )
2322rexbidv 2438 . . 3  |-  ( j  =  ( m  + 
1 )  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
2421, 23orbi12d 782 . 2  |-  ( j  =  ( m  + 
1 )  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
25 eqeq2 2149 . . . 4  |-  ( j  =  N  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  N ) )
2625rexbidv 2438 . . 3  |-  ( j  =  N  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
27 eqeq2 2149 . . . 4  |-  ( j  =  N  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  N ) )
2827rexbidv 2438 . . 3  |-  ( j  =  N  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
2926, 28orbi12d 782 . 2  |-  ( j  =  N  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) ) )
30 0z 9065 . . . 4  |-  0  e.  ZZ
31 2cn 8791 . . . . 5  |-  2  e.  CC
3231mul02i 8152 . . . 4  |-  ( 0  x.  2 )  =  0
33 oveq1 5781 . . . . . 6  |-  ( k  =  0  ->  (
k  x.  2 )  =  ( 0  x.  2 ) )
3433eqeq1d 2148 . . . . 5  |-  ( k  =  0  ->  (
( k  x.  2 )  =  0  <->  (
0  x.  2 )  =  0 ) )
3534rspcev 2789 . . . 4  |-  ( ( 0  e.  ZZ  /\  ( 0  x.  2 )  =  0 )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  0 )
3630, 32, 35mp2an 422 . . 3  |-  E. k  e.  ZZ  ( k  x.  2 )  =  0
3736olci 721 . 2  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  0  \/  E. k  e.  ZZ  (
k  x.  2 )  =  0 )
38 orcom 717 . . 3  |-  ( ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/ 
E. y  e.  ZZ  ( y  x.  2 )  =  m )  <-> 
( E. y  e.  ZZ  ( y  x.  2 )  =  m  \/  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m ) )
39 zcn 9059 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
40 mulcom 7749 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
4139, 31, 40sylancl 409 . . . . . . . 8  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  =  ( 2  x.  y ) )
4241adantl 275 . . . . . . 7  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
4342eqeq1d 2148 . . . . . 6  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  m  <-> 
( 2  x.  y
)  =  m ) )
44 eqid 2139 . . . . . . . . 9  |-  ( ( 2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 )
45 oveq2 5782 . . . . . . . . . . . 12  |-  ( n  =  y  ->  (
2  x.  n )  =  ( 2  x.  y ) )
4645oveq1d 5789 . . . . . . . . . . 11  |-  ( n  =  y  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
4746eqeq1d 2148 . . . . . . . . . 10  |-  ( n  =  y  ->  (
( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  ( (
2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 ) ) )
4847rspcev 2789 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  ( ( 2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 ) )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
4944, 48mpan2 421 . . . . . . . 8  |-  ( y  e.  ZZ  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y
)  +  1 ) )
50 oveq1 5781 . . . . . . . . . 10  |-  ( ( 2  x.  y )  =  m  ->  (
( 2  x.  y
)  +  1 )  =  ( m  + 
1 ) )
5150eqeq2d 2151 . . . . . . . . 9  |-  ( ( 2  x.  y )  =  m  ->  (
( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  ( (
2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5251rexbidv 2438 . . . . . . . 8  |-  ( ( 2  x.  y )  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5349, 52syl5ibcom 154 . . . . . . 7  |-  ( y  e.  ZZ  ->  (
( 2  x.  y
)  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5453adantl 275 . . . . . 6  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( 2  x.  y )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5543, 54sylbid 149 . . . . 5  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5655rexlimdva 2549 . . . 4  |-  ( m  e.  NN0  ->  ( E. y  e.  ZZ  (
y  x.  2 )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
57 peano2z 9090 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
5857adantl 275 . . . . . . 7  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( x  +  1 )  e.  ZZ )
59 zcn 9059 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
60 mulcom 7749 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  2  e.  CC )  ->  ( x  x.  2 )  =  ( 2  x.  x ) )
6131, 60mpan2 421 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
x  x.  2 )  =  ( 2  x.  x ) )
6231mulid2i 7769 . . . . . . . . . . . . 13  |-  ( 1  x.  2 )  =  2
6362a1i 9 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
1  x.  2 )  =  2 )
6461, 63oveq12d 5792 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( x  x.  2 )  +  ( 1  x.  2 ) )  =  ( ( 2  x.  x )  +  2 ) )
65 df-2 8779 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
6665oveq2i 5785 . . . . . . . . . . 11  |-  ( ( 2  x.  x )  +  2 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) )
6764, 66syl6eq 2188 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( x  x.  2 )  +  ( 1  x.  2 ) )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
68 ax-1cn 7713 . . . . . . . . . . 11  |-  1  e.  CC
69 adddir 7757 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  1  e.  CC  /\  2  e.  CC )  ->  (
( x  +  1 )  x.  2 )  =  ( ( x  x.  2 )  +  ( 1  x.  2 ) ) )
7068, 31, 69mp3an23 1307 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( x  +  1 )  x.  2 )  =  ( ( x  x.  2 )  +  ( 1  x.  2 ) ) )
71 mulcl 7747 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
7231, 71mpan 420 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
73 addass 7750 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  x
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7468, 68, 73mp3an23 1307 . . . . . . . . . . 11  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7572, 74syl 14 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7667, 70, 753eqtr4d 2182 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) )
7759, 76syl 14 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
( x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) )
7877adantl 275 . . . . . . 7  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( ( x  + 
1 )  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
79 oveq1 5781 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  (
k  x.  2 )  =  ( ( x  +  1 )  x.  2 ) )
8079eqeq1d 2148 . . . . . . . 8  |-  ( k  =  ( x  + 
1 )  ->  (
( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  ( (
x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) ) )
8180rspcev 2789 . . . . . . 7  |-  ( ( ( x  +  1 )  e.  ZZ  /\  ( ( x  + 
1 )  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
8258, 78, 81syl2anc 408 . . . . . 6  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
83 oveq1 5781 . . . . . . . 8  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( m  + 
1 ) )
8483eqeq2d 2151 . . . . . . 7  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  (
( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  ( k  x.  2 )  =  ( m  +  1 ) ) )
8584rexbidv 2438 . . . . . 6  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8682, 85syl5ibcom 154 . . . . 5  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  m  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8786rexlimdva 2549 . . . 4  |-  ( m  e.  NN0  ->  ( E. x  e.  ZZ  (
( 2  x.  x
)  +  1 )  =  m  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8856, 87orim12d 775 . . 3  |-  ( m  e.  NN0  ->  ( ( E. y  e.  ZZ  ( y  x.  2 )  =  m  \/ 
E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
8938, 88syl5bi 151 . 2  |-  ( m  e.  NN0  ->  ( ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/ 
E. y  e.  ZZ  ( y  x.  2 )  =  m )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
905, 19, 24, 29, 37, 89nn0ind 9165 1  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480   E.wrex 2417  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625   2c2 8771   NN0cn0 8977   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055
This theorem is referenced by:  odd2np1  11570
  Copyright terms: Public domain W3C validator