ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1lem GIF version

Theorem odd2np1lem 11569
Description: Lemma for odd2np1 11570. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Distinct variable groups:   𝑘,𝑁   𝑛,𝑁

Proof of Theorem odd2np1lem
Dummy variables 𝑗 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2149 . . . 4 (𝑗 = 0 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 0))
21rexbidv 2438 . . 3 (𝑗 = 0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0))
3 eqeq2 2149 . . . 4 (𝑗 = 0 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 0))
43rexbidv 2438 . . 3 (𝑗 = 0 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0))
52, 4orbi12d 782 . 2 (𝑗 = 0 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)))
6 eqeq2 2149 . . . . 5 (𝑗 = 𝑚 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑚))
76rexbidv 2438 . . . 4 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚))
8 oveq2 5782 . . . . . . 7 (𝑛 = 𝑥 → (2 · 𝑛) = (2 · 𝑥))
98oveq1d 5789 . . . . . 6 (𝑛 = 𝑥 → ((2 · 𝑛) + 1) = ((2 · 𝑥) + 1))
109eqeq1d 2148 . . . . 5 (𝑛 = 𝑥 → (((2 · 𝑛) + 1) = 𝑚 ↔ ((2 · 𝑥) + 1) = 𝑚))
1110cbvrexv 2655 . . . 4 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚)
127, 11syl6bb 195 . . 3 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
13 eqeq2 2149 . . . . 5 (𝑗 = 𝑚 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑚))
1413rexbidv 2438 . . . 4 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚))
15 oveq1 5781 . . . . . 6 (𝑘 = 𝑦 → (𝑘 · 2) = (𝑦 · 2))
1615eqeq1d 2148 . . . . 5 (𝑘 = 𝑦 → ((𝑘 · 2) = 𝑚 ↔ (𝑦 · 2) = 𝑚))
1716cbvrexv 2655 . . . 4 (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)
1814, 17syl6bb 195 . . 3 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚))
1912, 18orbi12d 782 . 2 (𝑗 = 𝑚 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)))
20 eqeq2 2149 . . . 4 (𝑗 = (𝑚 + 1) → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
2120rexbidv 2438 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
22 eqeq2 2149 . . . 4 (𝑗 = (𝑚 + 1) → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = (𝑚 + 1)))
2322rexbidv 2438 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
2421, 23orbi12d 782 . 2 (𝑗 = (𝑚 + 1) → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
25 eqeq2 2149 . . . 4 (𝑗 = 𝑁 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑁))
2625rexbidv 2438 . . 3 (𝑗 = 𝑁 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
27 eqeq2 2149 . . . 4 (𝑗 = 𝑁 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑁))
2827rexbidv 2438 . . 3 (𝑗 = 𝑁 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
2926, 28orbi12d 782 . 2 (𝑗 = 𝑁 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
30 0z 9065 . . . 4 0 ∈ ℤ
31 2cn 8791 . . . . 5 2 ∈ ℂ
3231mul02i 8152 . . . 4 (0 · 2) = 0
33 oveq1 5781 . . . . . 6 (𝑘 = 0 → (𝑘 · 2) = (0 · 2))
3433eqeq1d 2148 . . . . 5 (𝑘 = 0 → ((𝑘 · 2) = 0 ↔ (0 · 2) = 0))
3534rspcev 2789 . . . 4 ((0 ∈ ℤ ∧ (0 · 2) = 0) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
3630, 32, 35mp2an 422 . . 3 𝑘 ∈ ℤ (𝑘 · 2) = 0
3736olci 721 . 2 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
38 orcom 717 . . 3 ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) ↔ (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
39 zcn 9059 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
40 mulcom 7749 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) = (2 · 𝑦))
4139, 31, 40sylancl 409 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑦 · 2) = (2 · 𝑦))
4241adantl 275 . . . . . . 7 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → (𝑦 · 2) = (2 · 𝑦))
4342eqeq1d 2148 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 ↔ (2 · 𝑦) = 𝑚))
44 eqid 2139 . . . . . . . . 9 ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)
45 oveq2 5782 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (2 · 𝑛) = (2 · 𝑦))
4645oveq1d 5789 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4746eqeq1d 2148 . . . . . . . . . 10 (𝑛 = 𝑦 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)))
4847rspcev 2789 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4944, 48mpan2 421 . . . . . . . 8 (𝑦 ∈ ℤ → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
50 oveq1 5781 . . . . . . . . . 10 ((2 · 𝑦) = 𝑚 → ((2 · 𝑦) + 1) = (𝑚 + 1))
5150eqeq2d 2151 . . . . . . . . 9 ((2 · 𝑦) = 𝑚 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5251rexbidv 2438 . . . . . . . 8 ((2 · 𝑦) = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5349, 52syl5ibcom 154 . . . . . . 7 (𝑦 ∈ ℤ → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5453adantl 275 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5543, 54sylbid 149 . . . . 5 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5655rexlimdva 2549 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
57 peano2z 9090 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
5857adantl 275 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 + 1) ∈ ℤ)
59 zcn 9059 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
60 mulcom 7749 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑥 · 2) = (2 · 𝑥))
6131, 60mpan2 421 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥 · 2) = (2 · 𝑥))
6231mulid2i 7769 . . . . . . . . . . . . 13 (1 · 2) = 2
6362a1i 9 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (1 · 2) = 2)
6461, 63oveq12d 5792 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + 2))
65 df-2 8779 . . . . . . . . . . . 12 2 = (1 + 1)
6665oveq2i 5785 . . . . . . . . . . 11 ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1))
6764, 66syl6eq 2188 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + (1 + 1)))
68 ax-1cn 7713 . . . . . . . . . . 11 1 ∈ ℂ
69 adddir 7757 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
7068, 31, 69mp3an23 1307 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
71 mulcl 7747 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
7231, 71mpan 420 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
73 addass 7750 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7468, 68, 73mp3an23 1307 . . . . . . . . . . 11 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7572, 74syl 14 . . . . . . . . . 10 (𝑥 ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7667, 70, 753eqtr4d 2182 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7759, 76syl 14 . . . . . . . 8 (𝑥 ∈ ℤ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7877adantl 275 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
79 oveq1 5781 . . . . . . . . 9 (𝑘 = (𝑥 + 1) → (𝑘 · 2) = ((𝑥 + 1) · 2))
8079eqeq1d 2148 . . . . . . . 8 (𝑘 = (𝑥 + 1) → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)))
8180rspcev 2789 . . . . . . 7 (((𝑥 + 1) ∈ ℤ ∧ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
8258, 78, 81syl2anc 408 . . . . . 6 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
83 oveq1 5781 . . . . . . . 8 (((2 · 𝑥) + 1) = 𝑚 → (((2 · 𝑥) + 1) + 1) = (𝑚 + 1))
8483eqeq2d 2151 . . . . . . 7 (((2 · 𝑥) + 1) = 𝑚 → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ (𝑘 · 2) = (𝑚 + 1)))
8584rexbidv 2438 . . . . . 6 (((2 · 𝑥) + 1) = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8682, 85syl5ibcom 154 . . . . 5 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8786rexlimdva 2549 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8856, 87orim12d 775 . . 3 (𝑚 ∈ ℕ0 → ((∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
8938, 88syl5bi 151 . 2 (𝑚 ∈ ℕ0 → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
905, 19, 24, 29, 37, 89nn0ind 9165 1 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480  wrex 2417  (class class class)co 5774  cc 7618  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625  2c2 8771  0cn0 8977  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055
This theorem is referenced by:  odd2np1  11570
  Copyright terms: Public domain W3C validator