ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem Unicode version

Theorem onsucelsucexmidlem 4444
Description: Lemma for onsucelsucexmid 4445. The set  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } appears as  A in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5765), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4435. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
Distinct variable group:    ph, x

Proof of Theorem onsucelsucexmidlem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . . . . . . 8  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )  /\  z  =  (/) )  ->  y  e.  z )
2 noel 3367 . . . . . . . . . 10  |-  -.  y  e.  (/)
3 eleq2 2203 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  e.  z  <->  y  e.  (/) ) )
42, 3mtbiri 664 . . . . . . . . 9  |-  ( z  =  (/)  ->  -.  y  e.  z )
54adantl 275 . . . . . . . 8  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )  /\  z  =  (/) )  ->  -.  y  e.  z )
61, 5pm2.21dd 609 . . . . . . 7  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )  /\  z  =  (/) )  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )
76ex 114 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  (
z  =  (/)  ->  y  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) } ) )
8 eleq2 2203 . . . . . . . . . . 11  |-  ( z  =  { (/) }  ->  ( y  e.  z  <->  y  e.  {
(/) } ) )
98biimpac 296 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  e.  { (/)
} )
10 velsn 3544 . . . . . . . . . 10  |-  ( y  e.  { (/) }  <->  y  =  (/) )
119, 10sylib 121 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  =  (/) )
12 onsucelsucexmidlem1 4443 . . . . . . . . 9  |-  (/)  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
1311, 12eqeltrdi 2230 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )
1413ex 114 . . . . . . 7  |-  ( y  e.  z  ->  (
z  =  { (/) }  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } ) )
1514adantr 274 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  (
z  =  { (/) }  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } ) )
16 elrabi 2837 . . . . . . . 8  |-  ( z  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  ->  z  e.  { (/)
,  { (/) } }
)
17 vex 2689 . . . . . . . . 9  |-  z  e. 
_V
1817elpr 3548 . . . . . . . 8  |-  ( z  e.  { (/) ,  { (/)
} }  <->  ( z  =  (/)  \/  z  =  { (/) } ) )
1916, 18sylib 121 . . . . . . 7  |-  ( z  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  ->  ( z  =  (/)  \/  z  =  { (/)
} ) )
2019adantl 275 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  (
z  =  (/)  \/  z  =  { (/) } ) )
217, 15, 20mpjaod 707 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  y  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )
2221gen2 1426 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  y  e.  { x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )
23 dftr2 4028 . . . 4  |-  ( Tr 
{ x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } ) )
2422, 23mpbir 145 . . 3  |-  Tr  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
25 ssrab2 3182 . . 3  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  C_  { (/) ,  { (/)
} }
26 2ordpr 4439 . . 3  |-  Ord  { (/)
,  { (/) } }
27 trssord 4302 . . 3  |-  ( ( Tr  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  /\  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  C_  { (/) ,  { (/)
} }  /\  Ord  {
(/) ,  { (/) } }
)  ->  Ord  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )
2824, 25, 26, 27mp3an 1315 . 2  |-  Ord  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
29 pp0ex 4113 . . . 4  |-  { (/) ,  { (/) } }  e.  _V
3029rabex 4072 . . 3  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  _V
3130elon 4296 . 2  |-  ( { x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }  e.  On 
<->  Ord  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )
3228, 31mpbir 145 1  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697   A.wal 1329    = wceq 1331    e. wcel 1480   {crab 2420    C_ wss 3071   (/)c0 3363   {csn 3527   {cpr 3528   Tr wtr 4026   Ord word 4284   Oncon0 4285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-uni 3737  df-tr 4027  df-iord 4288  df-on 4290  df-suc 4293
This theorem is referenced by:  onsucelsucexmid  4445  acexmidlemcase  5769  acexmidlemv  5772
  Copyright terms: Public domain W3C validator