Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelco Unicode version

Theorem opelco 4535
 Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1
opelco.2
Assertion
Ref Expression
opelco
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem opelco
StepHypRef Expression
1 df-br 3794 . 2
2 opelco.1 . . 3
3 opelco.2 . . 3
42, 3brco 4534 . 2
51, 4bitr3i 184 1
 Colors of variables: wff set class Syntax hints:   wa 102   wb 103  wex 1422   wcel 1434  cvv 2602  cop 3409   class class class wbr 3793   ccom 4375 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-co 4380 This theorem is referenced by:  dmcoss  4629  dmcosseq  4631  cotr  4736  coiun  4860  co02  4864  coi1  4866  coass  4869  fmptco  5362  dftpos4  5912
 Copyright terms: Public domain W3C validator