ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelres Unicode version

Theorem opelres 4665
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelres.1  |-  B  e. 
_V
Assertion
Ref Expression
opelres  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )

Proof of Theorem opelres
StepHypRef Expression
1 df-res 4403 . . 3  |-  ( C  |`  D )  =  ( C  i^i  ( D  X.  _V ) )
21eleq2i 2149 . 2  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) ) )
3 elin 3165 . 2  |-  ( <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V )
) )
4 opelres.1 . . . 4  |-  B  e. 
_V
5 opelxp 4420 . . . 4  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  ( A  e.  D  /\  B  e.  _V ) )
64, 5mpbiran2 883 . . 3  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  A  e.  D )
76anbi2i 445 . 2  |-  ( (
<. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
82, 3, 73bitri 204 1  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    e. wcel 1434   _Vcvv 2610    i^i cin 2981   <.cop 3419    X. cxp 4389    |` cres 4393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-opab 3860  df-xp 4397  df-res 4403
This theorem is referenced by:  brres  4666  opelresg  4667  opres  4669  dmres  4680  elres  4694  relssres  4696  resiexg  4703  iss  4704  asymref  4760  ssrnres  4813  cnvresima  4860  ressn  4908  funssres  4992  fcnvres  5124
  Copyright terms: Public domain W3C validator