ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrnmpt Unicode version

Theorem ralrnmpt 5341
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1  |-  F  =  ( x  e.  A  |->  B )
ralrnmpt.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralrnmpt  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ch ) )
Distinct variable groups:    x, A    y, B    ch, y    y, F    ps, x
Allowed substitution hints:    ps( y)    ch( x)    A( y)    B( x)    F( x)    V( x, y)

Proof of Theorem ralrnmpt
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
21fnmpt 5056 . . . 4  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
3 dfsbcq 2818 . . . . 5  |-  ( w  =  ( F `  z )  ->  ( [. w  /  y ]. ps  <->  [. ( F `  z )  /  y ]. ps ) )
43ralrn 5337 . . . 4  |-  ( F  Fn  A  ->  ( A. w  e.  ran  F
[. w  /  y ]. ps  <->  A. z  e.  A  [. ( F `  z
)  /  y ]. ps ) )
52, 4syl 14 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( A. w  e.  ran  F [. w  /  y ]. ps  <->  A. z  e.  A  [. ( F `  z )  /  y ]. ps ) )
6 nfv 1462 . . . . 5  |-  F/ w ps
7 nfsbc1v 2834 . . . . 5  |-  F/ y
[. w  /  y ]. ps
8 sbceq1a 2825 . . . . 5  |-  ( y  =  w  ->  ( ps 
<-> 
[. w  /  y ]. ps ) )
96, 7, 8cbvral 2574 . . . 4  |-  ( A. y  e.  ran  F ps  <->  A. w  e.  ran  F [. w  /  y ]. ps )
109bicomi 130 . . 3  |-  ( A. w  e.  ran  F [. w  /  y ]. ps  <->  A. y  e.  ran  F ps )
11 nfmpt1 3879 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
121, 11nfcxfr 2217 . . . . . 6  |-  F/_ x F
13 nfcv 2220 . . . . . 6  |-  F/_ x
z
1412, 13nffv 5216 . . . . 5  |-  F/_ x
( F `  z
)
15 nfv 1462 . . . . 5  |-  F/ x ps
1614, 15nfsbc 2836 . . . 4  |-  F/ x [. ( F `  z
)  /  y ]. ps
17 nfv 1462 . . . 4  |-  F/ z
[. ( F `  x )  /  y ]. ps
18 fveq2 5209 . . . . 5  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
19 dfsbcq 2818 . . . . 5  |-  ( ( F `  z )  =  ( F `  x )  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2018, 19syl 14 . . . 4  |-  ( z  =  x  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2116, 17, 20cbvral 2574 . . 3  |-  ( A. z  e.  A  [. ( F `  z )  /  y ]. ps  <->  A. x  e.  A  [. ( F `  x )  /  y ]. ps )
225, 10, 213bitr3g 220 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  [. ( F `  x )  /  y ]. ps ) )
231fvmpt2 5286 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( F `  x
)  =  B )
24 dfsbcq 2818 . . . . . 6  |-  ( ( F `  x )  =  B  ->  ( [. ( F `  x
)  /  y ]. ps 
<-> 
[. B  /  y ]. ps ) )
2523, 24syl 14 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  [. B  / 
y ]. ps ) )
26 ralrnmpt.2 . . . . . . 7  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
2726sbcieg 2847 . . . . . 6  |-  ( B  e.  V  ->  ( [. B  /  y ]. ps  <->  ch ) )
2827adantl 271 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. B  / 
y ]. ps  <->  ch )
)
2925, 28bitrd 186 . . . 4  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  ch )
)
3029ralimiaa 2426 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  ( [. ( F `  x )  /  y ]. ps  <->  ch ) )
31 ralbi 2490 . . 3  |-  ( A. x  e.  A  ( [. ( F `  x
)  /  y ]. ps 
<->  ch )  ->  ( A. x  e.  A  [. ( F `  x
)  /  y ]. ps 
<-> 
A. x  e.  A  ch ) )
3230, 31syl 14 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( A. x  e.  A  [. ( F `  x )  /  y ]. ps  <->  A. x  e.  A  ch ) )
3322, 32bitrd 186 1  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2349   [.wsbc 2816    |-> cmpt 3847   ran crn 4372    Fn wfn 4927   ` cfv 4932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-iota 4897  df-fun 4934  df-fn 4935  df-fv 4940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator