![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbceq1a | Unicode version |
Description: Equality theorem for class substitution. Class version of sbequ12 1695. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 1698 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dfsbcq2 2819 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5bbr 192 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-sbc 2817 |
This theorem is referenced by: sbceq2a 2826 elrabsf 2853 cbvralcsf 2965 cbvrexcsf 2966 euotd 4011 ralrnmpt 5335 rexrnmpt 5336 riotass2 5519 riotass 5520 sbcopeq1a 5838 mpt2xopoveq 5883 findcard2 6413 findcard2s 6414 ac6sfi 6421 indpi 6583 nn0ind-raph 8534 indstr 8751 fzrevral 9187 exfzdc 9315 uzsinds 9507 zsupcllemstep 10474 infssuzex 10478 prmind2 10635 bj-intabssel 10735 bj-bdfindes 10887 bj-findes 10919 |
Copyright terms: Public domain | W3C validator |