![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq | Unicode version |
Description: This theorem, which is
similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 2817 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 2819 instead of df-sbc 2817. (dfsbcq2 2819 is needed because
unlike Quine we do not overload the df-sb 1687 syntax.) As a consequence of
these theorems, we can derive sbc8g 2823, which is a weaker version of
df-sbc 2817 that leaves substitution undefined when ![]() However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 2823, so we will allow direct use of df-sbc 2817. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-sbc 2817 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-sbc 2817 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4g 221 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 df-sbc 2817 |
This theorem is referenced by: sbceq1d 2821 sbc8g 2823 spsbc 2827 sbcco 2837 sbcco2 2838 sbcie2g 2848 elrabsf 2853 eqsbc3 2854 csbeq1 2912 sbcnestgf 2954 sbcco3g 2960 cbvralcsf 2965 cbvrexcsf 2966 findes 4346 ralrnmpt 5335 rexrnmpt 5336 findcard2 6413 findcard2s 6414 ac6sfi 6421 nn1suc 8114 uzind4s2 8749 indstr 8751 bezoutlemmain 10520 prmind2 10635 |
Copyright terms: Public domain | W3C validator |