ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanuz2 Unicode version

Theorem rexanuz2 10766
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexanuz2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
)
Distinct variable groups:    j, M    ph, j    j, k, Z    ps, j
Allowed substitution hints:    ph( k)    ps( k)    M( k)

Proof of Theorem rexanuz2
StepHypRef Expression
1 eluzel2 9334 . . . . 5  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 rexuz3.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
31, 2eleq2s 2234 . . . 4  |-  ( j  e.  Z  ->  M  e.  ZZ )
43a1d 22 . . 3  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  ->  M  e.  ZZ ) )
54rexlimiv 2543 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  ->  M  e.  ZZ )
63a1d 22 . . . 4  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  M  e.  ZZ ) )
76rexlimiv 2543 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  M  e.  ZZ )
87adantr 274 . 2  |-  ( ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  /\ 
E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  M  e.  ZZ )
92rexuz3 10765 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) ) )
102rexuz3 10765 . . . . 5  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
112rexuz3 10765 . . . . 5  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
)
1210, 11anbi12d 464 . . . 4  |-  ( M  e.  ZZ  ->  (
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) ) )
13 rexanuz 10763 . . . 4  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
1412, 13syl6rbbr 198 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
) )
159, 14bitrd 187 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  /\ 
E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps ) ) )
165, 8, 15pm5.21nii 693 1  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   ` cfv 5123   ZZcz 9057   ZZ>=cuz 9329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-inn 8724  df-n0 8981  df-z 9058  df-uz 9330
This theorem is referenced by:  recvguniq  10770  climuni  11065  2clim  11073  climcn2  11081  txlm  12451
  Copyright terms: Public domain W3C validator