ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanuz Unicode version

Theorem rexanuz 10075
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Distinct variable groups:    j, k    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2490 . . . 4  |-  ( A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps )
)
21rexbii 2378 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  E. j  e.  ZZ  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps ) )
3 r19.40 2513 . . 3  |-  ( E. j  e.  ZZ  ( A. k  e.  ( ZZ>=
`  j ) ph  /\ 
A. k  e.  (
ZZ>= `  j ) ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
42, 3sylbi 119 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
)
5 uzf 8755 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5097 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 raleq 2554 . . . . 5  |-  ( x  =  ( ZZ>= `  j
)  ->  ( A. k  e.  x  ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
87rexrn 5356 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
95, 6, 8mp2b 8 . . 3  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
10 raleq 2554 . . . . 5  |-  ( y  =  ( ZZ>= `  j
)  ->  ( A. k  e.  y  ps  <->  A. k  e.  ( ZZ>= `  j ) ps )
)
1110rexrn 5356 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
125, 6, 11mp2b 8 . . 3  |-  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
13 uzin2 10074 . . . . . . . . 9  |-  ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  -> 
( x  i^i  y
)  e.  ran  ZZ>= )
14 inss1 3202 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  x
15 ssralv 3067 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  x  ->  ( A. k  e.  x  ph 
->  A. k  e.  ( x  i^i  y )
ph ) )
1614, 15ax-mp 7 . . . . . . . . . . 11  |-  ( A. k  e.  x  ph  ->  A. k  e.  ( x  i^i  y )
ph )
17 inss2 3203 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  y
18 ssralv 3067 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  y  ->  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps ) )
1917, 18ax-mp 7 . . . . . . . . . . 11  |-  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps )
2016, 19anim12i 331 . . . . . . . . . 10  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  ( A. k  e.  (
x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y
) ps ) )
21 r19.26 2490 . . . . . . . . . 10  |-  ( A. k  e.  ( x  i^i  y ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y ) ps ) )
2220, 21sylibr 132 . . . . . . . . 9  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  A. k  e.  ( x  i^i  y
) ( ph  /\  ps ) )
23 raleq 2554 . . . . . . . . . 10  |-  ( z  =  ( x  i^i  y )  ->  ( A. k  e.  z 
( ph  /\  ps )  <->  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
) )
2423rspcev 2710 . . . . . . . . 9  |-  ( ( ( x  i^i  y
)  e.  ran  ZZ>=  /\  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
)  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2513, 22, 24syl2an 283 . . . . . . . 8  |-  ( ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  /\  ( A. k  e.  x  ph  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2625an4s 553 . . . . . . 7  |-  ( ( ( x  e.  ran  ZZ>=  /\ 
A. k  e.  x  ph )  /\  ( y  e.  ran  ZZ>=  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2726rexlimdvaa 2483 . . . . . 6  |-  ( ( x  e.  ran  ZZ>=  /\  A. k  e.  x  ph )  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2827rexlimiva 2477 . . . . 5  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  ->  ( E. y  e. 
ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2928imp 122 . . . 4  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
30 raleq 2554 . . . . . 6  |-  ( z  =  ( ZZ>= `  j
)  ->  ( A. k  e.  z  ( ph  /\  ps )  <->  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
3130rexrn 5356 . . . . 5  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\ 
ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
325, 6, 31mp2b 8 . . . 4  |-  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
3329, 32sylib 120 . . 3  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
349, 12, 33syl2anbr 286 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) )
354, 34impbii 124 1  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   A.wral 2353   E.wrex 2354    i^i cin 2981    C_ wss 2982   ~Pcpw 3400   ran crn 4392    Fn wfn 4947   -->wf 4948   ` cfv 4952   ZZcz 8484   ZZ>=cuz 8752
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753
This theorem is referenced by:  rexfiuz  10076  rexuz3  10077  rexanuz2  10078
  Copyright terms: Public domain W3C validator