![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq2s | Unicode version |
Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
eleq2s.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eleq2s.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleq2s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2s.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eleq2i 2146 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | eleq2s.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylbi 119 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: elrabi 2747 opelopabsb 4023 epelg 4053 reg3exmidlemwe 4329 elxpi 4387 optocl 4442 fvmptss2 5279 fvmptssdm 5287 acexmidlemcase 5538 elmpt2cl 5729 mpt2xopn0yelv 5888 tfr2a 5970 tfri1dALT 6000 2oconcl 6086 ecexr 6177 ectocld 6238 ecoptocl 6259 eroveu 6263 diffitest 6421 en2eqpr 6434 dmaddpqlem 6629 nqpi 6630 nq0nn 6694 0nsr 6988 axaddcl 7094 axmulcl 7096 peano2uzs 8753 fzossnn0 9261 rebtwn2zlemstep 9339 fldiv4p1lem1div2 9387 frecfzennn 9508 facnn 9751 bcpasc 9790 rexuz3 10014 rexanuz2 10015 r19.2uz 10017 cau4 10140 caubnd2 10141 climshft2 10283 climaddc1 10305 climmulc2 10307 climsubc1 10308 climsubc2 10309 climlec2 10317 climcau 10322 climcaucn 10326 infssuzex 10489 infssuzledc 10490 3prm 10654 znnen 10709 |
Copyright terms: Public domain | W3C validator |