ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexiunxp Unicode version

Theorem rexiunxp 4681
Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp 4683, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
rexiunxp  |-  ( E. x  e.  U_  y  e.  A  ( {
y }  X.  B
) ph  <->  E. y  e.  A  E. z  e.  B  ps )
Distinct variable groups:    x, y, z, A    x, B, z    ph, y, z    ps, x
Allowed substitution hints:    ph( x)    ps( y,
z)    B( y)

Proof of Theorem rexiunxp
StepHypRef Expression
1 eliunxp 4678 . . . . . 6  |-  ( x  e.  U_ y  e.  A  ( { y }  X.  B )  <->  E. y E. z ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
) )
21anbi1i 453 . . . . 5  |-  ( ( x  e.  U_ y  e.  A  ( {
y }  X.  B
)  /\  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph ) )
3 19.41vv 1875 . . . . 5  |-  ( E. y E. z ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  /\  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph ) )
42, 3bitr4i 186 . . . 4  |-  ( ( x  e.  U_ y  e.  A  ( {
y }  X.  B
)  /\  ph )  <->  E. y E. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph ) )
54exbii 1584 . . 3  |-  ( E. x ( x  e. 
U_ y  e.  A  ( { y }  X.  B )  /\  ph ) 
<->  E. x E. y E. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph ) )
6 exrot3 1668 . . . 4  |-  ( E. x E. y E. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph )  <->  E. y E. z E. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph ) )
7 anass 398 . . . . . . 7  |-  ( ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  /\  ph )  <->  ( x  =  <. y ,  z
>.  /\  ( ( y  e.  A  /\  z  e.  B )  /\  ph ) ) )
87exbii 1584 . . . . . 6  |-  ( E. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph )  <->  E. x ( x  =  <. y ,  z
>.  /\  ( ( y  e.  A  /\  z  e.  B )  /\  ph ) ) )
9 vex 2689 . . . . . . . 8  |-  y  e. 
_V
10 vex 2689 . . . . . . . 8  |-  z  e. 
_V
119, 10opex 4151 . . . . . . 7  |-  <. y ,  z >.  e.  _V
12 ralxp.1 . . . . . . . 8  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
1312anbi2d 459 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  ( ( ( y  e.  A  /\  z  e.  B )  /\  ph )  <->  ( (
y  e.  A  /\  z  e.  B )  /\  ps ) ) )
1411, 13ceqsexv 2725 . . . . . 6  |-  ( E. x ( x  = 
<. y ,  z >.  /\  ( ( y  e.  A  /\  z  e.  B )  /\  ph ) )  <->  ( (
y  e.  A  /\  z  e.  B )  /\  ps ) )
158, 14bitri 183 . . . . 5  |-  ( E. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph )  <->  ( ( y  e.  A  /\  z  e.  B )  /\  ps ) )
16152exbii 1585 . . . 4  |-  ( E. y E. z E. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph )  <->  E. y E. z
( ( y  e.  A  /\  z  e.  B )  /\  ps ) )
176, 16bitri 183 . . 3  |-  ( E. x E. y E. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph )  <->  E. y E. z
( ( y  e.  A  /\  z  e.  B )  /\  ps ) )
185, 17bitri 183 . 2  |-  ( E. x ( x  e. 
U_ y  e.  A  ( { y }  X.  B )  /\  ph ) 
<->  E. y E. z
( ( y  e.  A  /\  z  e.  B )  /\  ps ) )
19 df-rex 2422 . 2  |-  ( E. x  e.  U_  y  e.  A  ( {
y }  X.  B
) ph  <->  E. x ( x  e.  U_ y  e.  A  ( { y }  X.  B )  /\  ph ) )
20 r2ex 2455 . 2  |-  ( E. y  e.  A  E. z  e.  B  ps  <->  E. y E. z ( ( y  e.  A  /\  z  e.  B
)  /\  ps )
)
2118, 19, 203bitr4i 211 1  |-  ( E. x  e.  U_  y  e.  A  ( {
y }  X.  B
) ph  <->  E. y  e.  A  E. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   {csn 3527   <.cop 3530   U_ciun 3813    X. cxp 4537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-iun 3815  df-opab 3990  df-xp 4545  df-rel 4546
This theorem is referenced by:  rexxp  4683
  Copyright terms: Public domain W3C validator