ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmet GIF version

Theorem bdmet 12674
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
Assertion
Ref Expression
bdmet ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem bdmet
StepHypRef Expression
1 rpxr 9452 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 9456 . . . 4 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 304 . . 3 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 stdbdmet.1 . . . . 5 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
54bdxmet 12673 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
653expb 1182 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
73, 6sylan2 284 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
8 xmetcl 12524 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ*)
983expb 1182 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
109adantlr 468 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
111ad2antlr 480 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ*)
12 xrmincl 11038 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*)
1310, 11, 12syl2anc 408 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*)
14 rpre 9451 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1514ad2antlr 480 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
16 xmetge0 12537 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐶𝑦))
17163expb 1182 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
1817adantlr 468 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
19 rpge0 9457 . . . . . . 7 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
2019ad2antlr 480 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ 𝑅)
21 0xr 7815 . . . . . . 7 0 ∈ ℝ*
22 xrlemininf 11043 . . . . . . 7 ((0 ∈ ℝ* ∧ (𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅)))
2321, 10, 11, 22mp3an2i 1320 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅)))
2418, 20, 23mpbir2and 928 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
25 xrmin2inf 11040 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)
2610, 11, 25syl2anc 408 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)
27 xrrege0 9611 . . . . 5 (((inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*𝑅 ∈ ℝ) ∧ (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∧ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ)
2813, 15, 24, 26, 27syl22anc 1217 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ)
2928ralrimivva 2514 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → ∀𝑥𝑋𝑦𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ)
304fmpo 6099 . . 3 (∀𝑥𝑋𝑦𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)
3129, 30sylib 121 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
32 ismet2 12526 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
337, 31, 32sylanbrc 413 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  {cpr 3528   class class class wbr 3929   × cxp 4537  wf 5119  cfv 5123  (class class class)co 5774  cmpo 5776  infcinf 6870  cr 7622  0cc0 7623  *cxr 7802   < clt 7803  cle 7804  +crp 9444  ∞Metcxmet 12152  Metcmet 12153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-rp 9445  df-xneg 9562  df-xadd 9563  df-icc 9681  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-xmet 12160  df-met 12161
This theorem is referenced by:  mopnex  12677
  Copyright terms: Public domain W3C validator