Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans GIF version

Theorem bj-nntrans 13149
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))

Proof of Theorem bj-nntrans
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3464 . . 3 𝑥 ∈ ∅ 𝑥 ⊆ ∅
2 df-suc 4293 . . . . . . 7 suc 𝑧 = (𝑧 ∪ {𝑧})
32eleq2i 2206 . . . . . 6 (𝑥 ∈ suc 𝑧𝑥 ∈ (𝑧 ∪ {𝑧}))
4 elun 3217 . . . . . . 7 (𝑥 ∈ (𝑧 ∪ {𝑧}) ↔ (𝑥𝑧𝑥 ∈ {𝑧}))
5 sssucid 4337 . . . . . . . . . 10 𝑧 ⊆ suc 𝑧
6 sstr2 3104 . . . . . . . . . 10 (𝑥𝑧 → (𝑧 ⊆ suc 𝑧𝑥 ⊆ suc 𝑧))
75, 6mpi 15 . . . . . . . . 9 (𝑥𝑧𝑥 ⊆ suc 𝑧)
87imim2i 12 . . . . . . . 8 ((𝑥𝑧𝑥𝑧) → (𝑥𝑧𝑥 ⊆ suc 𝑧))
9 elsni 3545 . . . . . . . . . 10 (𝑥 ∈ {𝑧} → 𝑥 = 𝑧)
109, 5eqsstrdi 3149 . . . . . . . . 9 (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧)
1110a1i 9 . . . . . . . 8 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧))
128, 11jaod 706 . . . . . . 7 ((𝑥𝑧𝑥𝑧) → ((𝑥𝑧𝑥 ∈ {𝑧}) → 𝑥 ⊆ suc 𝑧))
134, 12syl5bi 151 . . . . . 6 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ (𝑧 ∪ {𝑧}) → 𝑥 ⊆ suc 𝑧))
143, 13syl5bi 151 . . . . 5 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧))
1514ralimi2 2492 . . . 4 (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)
1615rgenw 2487 . . 3 𝑧 ∈ ω (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)
17 bdcv 13046 . . . . . 6 BOUNDED 𝑦
1817bdss 13062 . . . . 5 BOUNDED 𝑥𝑦
1918ax-bdal 13016 . . . 4 BOUNDED𝑥𝑦 𝑥𝑦
20 nfv 1508 . . . 4 𝑦𝑥 ∈ ∅ 𝑥 ⊆ ∅
21 nfv 1508 . . . 4 𝑦𝑥𝑧 𝑥𝑧
22 nfv 1508 . . . 4 𝑦𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧
23 sseq2 3121 . . . . . 6 (𝑦 = ∅ → (𝑥𝑦𝑥 ⊆ ∅))
2423raleqbi1dv 2634 . . . . 5 (𝑦 = ∅ → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥 ∈ ∅ 𝑥 ⊆ ∅))
2524biimprd 157 . . . 4 (𝑦 = ∅ → (∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ → ∀𝑥𝑦 𝑥𝑦))
26 sseq2 3121 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
2726raleqbi1dv 2634 . . . . 5 (𝑦 = 𝑧 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥𝑧 𝑥𝑧))
2827biimpd 143 . . . 4 (𝑦 = 𝑧 → (∀𝑥𝑦 𝑥𝑦 → ∀𝑥𝑧 𝑥𝑧))
29 sseq2 3121 . . . . . 6 (𝑦 = suc 𝑧 → (𝑥𝑦𝑥 ⊆ suc 𝑧))
3029raleqbi1dv 2634 . . . . 5 (𝑦 = suc 𝑧 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧))
3130biimprd 157 . . . 4 (𝑦 = suc 𝑧 → (∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧 → ∀𝑥𝑦 𝑥𝑦))
32 nfcv 2281 . . . 4 𝑦𝐴
33 nfv 1508 . . . 4 𝑦𝑥𝐴 𝑥𝐴
34 sseq2 3121 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
3534raleqbi1dv 2634 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥𝐴 𝑥𝐴))
3635biimpd 143 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝑦 𝑥𝑦 → ∀𝑥𝐴 𝑥𝐴))
3719, 20, 21, 22, 25, 28, 31, 32, 33, 36bj-bdfindisg 13146 . . 3 ((∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ ∧ ∀𝑧 ∈ ω (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)) → (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴))
381, 16, 37mp2an 422 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴)
39 nfv 1508 . . 3 𝑥 𝐵𝐴
40 sseq1 3120 . . 3 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
4139, 40rspc 2783 . 2 (𝐵𝐴 → (∀𝑥𝐴 𝑥𝐴𝐵𝐴))
4238, 41syl5com 29 1 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 697   = wceq 1331  wcel 1480  wral 2416  cun 3069  wss 3071  c0 3363  {csn 3527  suc csuc 4287  ωcom 4504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-nul 4054  ax-pr 4131  ax-un 4355  ax-bd0 13011  ax-bdor 13014  ax-bdal 13016  ax-bdex 13017  ax-bdeq 13018  ax-bdel 13019  ax-bdsb 13020  ax-bdsep 13082  ax-infvn 13139
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-uni 3737  df-int 3772  df-suc 4293  df-iom 4505  df-bdc 13039  df-bj-ind 13125
This theorem is referenced by:  bj-nntrans2  13150  bj-nnelirr  13151  bj-nnen2lp  13152
  Copyright terms: Public domain W3C validator