![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elsni | GIF version |
Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elsni | ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsng 3415 | . 2 ⊢ (𝐴 ∈ {𝐵} → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
2 | 1 | ibi 174 | 1 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 {csn 3400 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-sn 3406 |
This theorem is referenced by: elsn2g 3429 disjsn2 3457 sssnm 3548 disjxsn 3785 opth1 3993 elsuci 4160 ordtri2orexmid 4268 onsucsssucexmid 4272 sosng 4433 ressn 4882 funcnvsn 4969 funinsn 4973 fvconst 5377 fmptap 5379 fmptapd 5380 fvunsng 5383 1stconst 5867 2ndconst 5868 reldmtpos 5896 tpostpos 5907 1domsn 6353 ac6sfi 6421 onunsnss 6427 snon0 6435 supsnti 6467 elreal2 7050 ax1rid 7094 ltxrlt 7234 un0addcl 8377 un0mulcl 8378 elfzonlteqm1 9285 iseqid3 9550 1exp 9591 sizeinfuni 9790 sizeennnuni 9792 sizeprg 9821 divalgmod 10460 bj-nntrans 10889 bj-nnelirr 10891 |
Copyright terms: Public domain | W3C validator |