ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgpr GIF version

Theorem caucvgpr 6838
Description: A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 6818 and caucvgprpr 6868. Reading cauappcvgpr 6818 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
Assertion
Ref Expression
caucvgpr (𝜑 → ∃𝑦P𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘,𝑛,𝑙,𝑢,𝑥,𝑦   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑛,𝑙)   𝐴(𝑥,𝑦,𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgpr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . 3 (𝜑𝐹:NQ)
2 caucvgpr.cau . . 3 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
3 caucvgpr.bnd . . 3 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 opeq1 3577 . . . . . . . . . . 11 (𝑧 = 𝑗 → ⟨𝑧, 1𝑜⟩ = ⟨𝑗, 1𝑜⟩)
54eceq1d 6173 . . . . . . . . . 10 (𝑧 = 𝑗 → [⟨𝑧, 1𝑜⟩] ~Q = [⟨𝑗, 1𝑜⟩] ~Q )
65fveq2d 5210 . . . . . . . . 9 (𝑧 = 𝑗 → (*Q‘[⟨𝑧, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ))
76oveq2d 5556 . . . . . . . 8 (𝑧 = 𝑗 → (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
8 fveq2 5206 . . . . . . . 8 (𝑧 = 𝑗 → (𝐹𝑧) = (𝐹𝑗))
97, 8breq12d 3805 . . . . . . 7 (𝑧 = 𝑗 → ((𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧) ↔ (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
109cbvrexv 2551 . . . . . 6 (∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧) ↔ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
1110a1i 9 . . . . 5 (𝑙Q → (∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧) ↔ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
1211rabbiia 2564 . . . 4 {𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)} = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
138, 6oveq12d 5558 . . . . . . . 8 (𝑧 = 𝑗 → ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) = ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
1413breq1d 3802 . . . . . . 7 (𝑧 = 𝑗 → (((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢))
1514cbvrexv 2551 . . . . . 6 (∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢)
1615a1i 9 . . . . 5 (𝑢Q → (∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢))
1716rabbiia 2564 . . . 4 {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢} = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
1812, 17opeq12i 3582 . . 3 ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
191, 2, 3, 18caucvgprlemcl 6832 . 2 (𝜑 → ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ ∈ P)
201, 2, 3, 18caucvgprlemlim 6837 . 2 (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
21 oveq1 5547 . . . . . . . 8 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ → (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) = (⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩))
2221breq2d 3804 . . . . . . 7 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩)))
23 breq1 3795 . . . . . . 7 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ → (𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩ ↔ ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))
2422, 23anbi12d 450 . . . . . 6 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ → ((⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
2524imbi2d 223 . . . . 5 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ → ((𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)) ↔ (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
2625rexralbidv 2367 . . . 4 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ → (∃𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)) ↔ ∃𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
2726ralbidv 2343 . . 3 (𝑦 = ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ → (∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)) ↔ ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))))
2827rspcev 2673 . 2 ((⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ ∈ P ∧ ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ ⟨{𝑙Q ∣ ∃𝑧N (𝑙 +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q (𝐹𝑧)}, {𝑢Q ∣ ∃𝑧N ((𝐹𝑧) +Q (*Q‘[⟨𝑧, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩))) → ∃𝑦P𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
2919, 20, 28syl2anc 397 1 (𝜑 → ∃𝑦P𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  {cab 2042  wral 2323  wrex 2324  {crab 2327  cop 3406   class class class wbr 3792  wf 4926  cfv 4930  (class class class)co 5540  1𝑜c1o 6025  [cec 6135  Ncnpi 6428   <N clti 6431   ~Q ceq 6435  Qcnq 6436   +Q cplq 6438  *Qcrq 6440   <Q cltq 6441  Pcnp 6447   +P cpp 6449  <P cltp 6451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-iplp 6624  df-iltp 6626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator