ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimcim GIF version

Theorem cnplimcim 12805
Description: If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
cnplimcim.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimcim.j 𝐽 = (𝐾t 𝐴)
Assertion
Ref Expression
cnplimcim ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))

Proof of Theorem cnplimcim
Dummy variables 𝑑 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimcim.j . . . . . 6 𝐽 = (𝐾t 𝐴)
2 cnplimcim.k . . . . . . . 8 𝐾 = (MetOpen‘(abs ∘ − ))
32cntoptopon 12701 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
4 simpl 108 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐴 ⊆ ℂ)
5 resttopon 12340 . . . . . . 7 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
63, 4, 5sylancr 410 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐾t 𝐴) ∈ (TopOn‘𝐴))
71, 6eqeltrid 2226 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝐴))
8 cnpf2 12376 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
983expia 1183 . . . . 5 ((𝐽 ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
107, 3, 9sylancl 409 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐹:𝐴⟶ℂ))
1110imp 123 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹:𝐴⟶ℂ)
12 simplr 519 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵𝐴)
1311, 12ffvelrnd 5556 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹𝐵) ∈ ℂ)
14 simpr 109 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
15 simpll 518 . . . . . . . . . 10 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℂ)
16 cnxmet 12700 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
17 eqid 2139 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
18 eqid 2139 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
1917, 2, 18metrest 12675 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
2016, 19mpan 420 . . . . . . . . . . 11 (𝐴 ⊆ ℂ → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
211, 20syl5eq 2184 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
2215, 21syl 14 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
232a1i 9 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐾 = (MetOpen‘(abs ∘ − )))
24 xmetres2 12548 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
2516, 15, 24sylancr 410 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
2616a1i 9 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (abs ∘ − ) ∈ (∞Met‘ℂ))
27 simplr 519 . . . . . . . . 9 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵𝐴)
2822, 23, 25, 26, 27metcnpd 12689 . . . . . . . 8 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))))
2911, 28syldan 280 . . . . . . 7 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))))
3014, 29mpbid 146 . . . . . 6 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒)))
3130simprd 113 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒))
3212ad3antrrr 483 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐵𝐴)
33 simpr 109 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧𝐴)
3432, 33ovresd 5911 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) = (𝐵(abs ∘ − )𝑧))
3515, 27sseldd 3098 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹:𝐴⟶ℂ) → 𝐵 ∈ ℂ)
3611, 35syldan 280 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ ℂ)
3736ad3antrrr 483 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐵 ∈ ℂ)
38 simpll 518 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐴 ⊆ ℂ)
3938ad3antrrr 483 . . . . . . . . . . . . . . 15 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐴 ⊆ ℂ)
4039, 33sseldd 3098 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝑧 ∈ ℂ)
41 eqid 2139 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
4241cnmetdval 12698 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
4337, 40, 42syl2anc 408 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
4437, 40abssubd 10965 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘(𝐵𝑧)) = (abs‘(𝑧𝐵)))
4534, 43, 443eqtrd 2176 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) = (abs‘(𝑧𝐵)))
4645breq1d 3939 . . . . . . . . . . 11 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 ↔ (abs‘(𝑧𝐵)) < 𝑑))
4746biimprd 157 . . . . . . . . . 10 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((abs‘(𝑧𝐵)) < 𝑑 → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑))
4847adantld 276 . . . . . . . . 9 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑))
4913ad3antrrr 483 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝐵) ∈ ℂ)
5011ad3antrrr 483 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → 𝐹:𝐴⟶ℂ)
5150, 33ffvelrnd 5556 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
5241cnmetdval 12698 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝐵) − (𝐹𝑧))))
5349, 51, 52syl2anc 408 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝐵) − (𝐹𝑧))))
5449, 51abssubd 10965 . . . . . . . . . . . 12 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (abs‘((𝐹𝐵) − (𝐹𝑧))) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
5553, 54eqtrd 2172 . . . . . . . . . . 11 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
5655breq1d 3939 . . . . . . . . . 10 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒 ↔ (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
5756biimpd 143 . . . . . . . . 9 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
5848, 57imim12d 74 . . . . . . . 8 ((((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
5958ralimdva 2499 . . . . . . 7 (((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6059reximdva 2534 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) ∧ 𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6160ralimdva 2499 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝐵((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑧) < 𝑑 → ((𝐹𝐵)(abs ∘ − )(𝐹𝑧)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)))
6231, 61mpd 13 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))
6311, 38, 36ellimc3ap 12799 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ ((𝐹𝐵) ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒))))
6413, 62, 63mpbir2and 928 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
6511, 64jca 304 . 2 (((𝐴 ⊆ ℂ ∧ 𝐵𝐴) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵)))
6665ex 114 1 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071   class class class wbr 3929   × cxp 4537  cres 4541  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  cc 7618   < clt 7800  cmin 7933   # cap 8343  +crp 9441  abscabs 10769  t crest 12120  ∞Metcxmet 12149  MetOpencmopn 12154  TopOnctopon 12177   CnP ccnp 12355   lim climc 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-cnp 12358  df-limced 12794
This theorem is referenced by:  cnplimccntop  12808  cnlimcim  12809
  Copyright terms: Public domain W3C validator