ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemudc GIF version

Theorem ctiunctlemudc 11950
Description: Lemma for ctiunct 11953. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som (𝜑𝑆 ⊆ ω)
ctiunct.sdc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctiunct.f (𝜑𝐹:𝑆onto𝐴)
ctiunct.tom ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)
ctiunct.tdc ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
ctiunct.g ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)
ctiunct.j (𝜑𝐽:ω–1-1-onto→(ω × ω))
ctiunct.u 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
Assertion
Ref Expression
ctiunctlemudc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
Distinct variable groups:   𝑥,𝐴   𝑛,𝐹,𝑥   𝑧,𝐹,𝑥   𝑛,𝐽,𝑥   𝑧,𝐽   𝑆,𝑛   𝑧,𝑆   𝑇,𝑛   𝑧,𝑇   𝑈,𝑛   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑛)   𝐴(𝑧,𝑛)   𝐵(𝑥,𝑧,𝑛)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑧)   𝐺(𝑥,𝑧,𝑛)

Proof of Theorem ctiunctlemudc
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2202 . . . . . . . . 9 (𝑛 = (1st ‘(𝐽𝑚)) → (𝑛𝑆 ↔ (1st ‘(𝐽𝑚)) ∈ 𝑆))
21dcbid 823 . . . . . . . 8 (𝑛 = (1st ‘(𝐽𝑚)) → (DECID 𝑛𝑆DECID (1st ‘(𝐽𝑚)) ∈ 𝑆))
3 ctiunct.sdc . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
43adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ ω) → ∀𝑛 ∈ ω DECID 𝑛𝑆)
5 ctiunct.j . . . . . . . . . . . 12 (𝜑𝐽:ω–1-1-onto→(ω × ω))
65adantr 274 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ω) → 𝐽:ω–1-1-onto→(ω × ω))
7 f1of 5367 . . . . . . . . . . 11 (𝐽:ω–1-1-onto→(ω × ω) → 𝐽:ω⟶(ω × ω))
86, 7syl 14 . . . . . . . . . 10 ((𝜑𝑚 ∈ ω) → 𝐽:ω⟶(ω × ω))
9 simpr 109 . . . . . . . . . 10 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ ω)
108, 9ffvelrnd 5556 . . . . . . . . 9 ((𝜑𝑚 ∈ ω) → (𝐽𝑚) ∈ (ω × ω))
11 xp1st 6063 . . . . . . . . 9 ((𝐽𝑚) ∈ (ω × ω) → (1st ‘(𝐽𝑚)) ∈ ω)
1210, 11syl 14 . . . . . . . 8 ((𝜑𝑚 ∈ ω) → (1st ‘(𝐽𝑚)) ∈ ω)
132, 4, 12rspcdva 2794 . . . . . . 7 ((𝜑𝑚 ∈ ω) → DECID (1st ‘(𝐽𝑚)) ∈ 𝑆)
1413adantr 274 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID (1st ‘(𝐽𝑚)) ∈ 𝑆)
15 eleq1 2202 . . . . . . . 8 (𝑛 = (2nd ‘(𝐽𝑚)) → (𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇 ↔ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
1615dcbid 823 . . . . . . 7 (𝑛 = (2nd ‘(𝐽𝑚)) → (DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
17 ctiunct.f . . . . . . . . . . 11 (𝜑𝐹:𝑆onto𝐴)
18 fof 5345 . . . . . . . . . . 11 (𝐹:𝑆onto𝐴𝐹:𝑆𝐴)
1917, 18syl 14 . . . . . . . . . 10 (𝜑𝐹:𝑆𝐴)
2019ad2antrr 479 . . . . . . . . 9 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → 𝐹:𝑆𝐴)
21 simpr 109 . . . . . . . . 9 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (1st ‘(𝐽𝑚)) ∈ 𝑆)
2220, 21ffvelrnd 5556 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (𝐹‘(1st ‘(𝐽𝑚))) ∈ 𝐴)
23 ctiunct.tdc . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
2423ralrimiva 2505 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇)
2524ad2antrr 479 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇)
26 nfcv 2281 . . . . . . . . . 10 𝑥ω
27 nfcsb1v 3035 . . . . . . . . . . . 12 𝑥(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
2827nfcri 2275 . . . . . . . . . . 11 𝑥 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
2928nfdc 1637 . . . . . . . . . 10 𝑥DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
3026, 29nfralya 2473 . . . . . . . . 9 𝑥𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
31 csbeq1a 3012 . . . . . . . . . . . 12 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → 𝑇 = (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
3231eleq2d 2209 . . . . . . . . . . 11 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (𝑛𝑇𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3332dcbid 823 . . . . . . . . . 10 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (DECID 𝑛𝑇DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3433ralbidv 2437 . . . . . . . . 9 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (∀𝑛 ∈ ω DECID 𝑛𝑇 ↔ ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3530, 34rspc 2783 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑚))) ∈ 𝐴 → (∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇 → ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3622, 25, 35sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
3710adantr 274 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (𝐽𝑚) ∈ (ω × ω))
38 xp2nd 6064 . . . . . . . 8 ((𝐽𝑚) ∈ (ω × ω) → (2nd ‘(𝐽𝑚)) ∈ ω)
3937, 38syl 14 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (2nd ‘(𝐽𝑚)) ∈ ω)
4016, 36, 39rspcdva 2794 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
41 dcan 918 . . . . . 6 (DECID (1st ‘(𝐽𝑚)) ∈ 𝑆 → (DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
4214, 40, 41sylc 62 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
43 simpr 109 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆)
4443intnanrd 917 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
4544olcd 723 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ∨ ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
46 df-dc 820 . . . . . 6 (DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ∨ ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
4745, 46sylibr 133 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
48 exmiddc 821 . . . . . 6 (DECID (1st ‘(𝐽𝑚)) ∈ 𝑆 → ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∨ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆))
4913, 48syl 14 . . . . 5 ((𝜑𝑚 ∈ ω) → ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∨ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆))
5042, 47, 49mpjaodan 787 . . . 4 ((𝜑𝑚 ∈ ω) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
51 ibar 299 . . . . . . 7 (𝑚 ∈ ω → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))))
5251adantl 275 . . . . . 6 ((𝜑𝑚 ∈ ω) → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))))
53 2fveq3 5426 . . . . . . . . 9 (𝑧 = 𝑚 → (1st ‘(𝐽𝑧)) = (1st ‘(𝐽𝑚)))
5453eleq1d 2208 . . . . . . . 8 (𝑧 = 𝑚 → ((1st ‘(𝐽𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽𝑚)) ∈ 𝑆))
55 2fveq3 5426 . . . . . . . . 9 (𝑧 = 𝑚 → (2nd ‘(𝐽𝑧)) = (2nd ‘(𝐽𝑚)))
5653fveq2d 5425 . . . . . . . . . 10 (𝑧 = 𝑚 → (𝐹‘(1st ‘(𝐽𝑧))) = (𝐹‘(1st ‘(𝐽𝑚))))
5756csbeq1d 3010 . . . . . . . . 9 (𝑧 = 𝑚(𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇 = (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
5855, 57eleq12d 2210 . . . . . . . 8 (𝑧 = 𝑚 → ((2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇 ↔ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
5954, 58anbi12d 464 . . . . . . 7 (𝑧 = 𝑚 → (((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇) ↔ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
60 ctiunct.u . . . . . . 7 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
6159, 60elrab2 2843 . . . . . 6 (𝑚𝑈 ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
6252, 61syl6rbbr 198 . . . . 5 ((𝜑𝑚 ∈ ω) → (𝑚𝑈 ↔ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
6362dcbid 823 . . . 4 ((𝜑𝑚 ∈ ω) → (DECID 𝑚𝑈DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
6450, 63mpbird 166 . . 3 ((𝜑𝑚 ∈ ω) → DECID 𝑚𝑈)
6564ralrimiva 2505 . 2 (𝜑 → ∀𝑚 ∈ ω DECID 𝑚𝑈)
66 eleq1 2202 . . . 4 (𝑚 = 𝑛 → (𝑚𝑈𝑛𝑈))
6766dcbid 823 . . 3 (𝑚 = 𝑛 → (DECID 𝑚𝑈DECID 𝑛𝑈))
6867cbvralv 2654 . 2 (∀𝑚 ∈ ω DECID 𝑚𝑈 ↔ ∀𝑛 ∈ ω DECID 𝑛𝑈)
6965, 68sylib 121 1 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wral 2416  {crab 2420  csb 3003  wss 3071  ωcom 4504   × cxp 4537  wf 5119  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  1st c1st 6036  2nd c2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by:  ctiunct  11953
  Copyright terms: Public domain W3C validator