Step | Hyp | Ref
| Expression |
1 | | elex 2560 |
. 2
⊢ (A ∈ (B × 𝐶) → A ∈
V) |
2 | | elex 2560 |
. . . 4
⊢ (∪ dom {A} ∈ B →
∪ dom {A} ∈ V) |
3 | | elex 2560 |
. . . 4
⊢ (∪ ran {A} ∈ 𝐶 → ∪ ran
{A} ∈
V) |
4 | 2, 3 | anim12i 321 |
. . 3
⊢ ((∪ dom {A} ∈ B ∧ ∪ ran {A} ∈ 𝐶) → (∪ dom {A} ∈ V ∧ ∪ ran {A} ∈ V)) |
5 | | opexgOLD 3956 |
. . . . 5
⊢ ((∪ dom {A} ∈ V ∧ ∪ ran {A} ∈ V) → 〈∪ dom
{A}, ∪ ran
{A}〉 ∈ V) |
6 | 5 | adantl 262 |
. . . 4
⊢
((A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ V ∧ ∪ ran {A} ∈ V)) →
〈∪ dom {A},
∪ ran {A}〉
∈ V) |
7 | | eleq1 2097 |
. . . . 5
⊢ (A = 〈∪ dom {A}, ∪ ran {A}〉 → (A ∈ V ↔
〈∪ dom {A},
∪ ran {A}〉
∈ V)) |
8 | 7 | adantr 261 |
. . . 4
⊢
((A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ V ∧ ∪ ran {A} ∈ V)) →
(A ∈ V
↔ 〈∪ dom {A}, ∪ ran {A}〉 ∈
V)) |
9 | 6, 8 | mpbird 156 |
. . 3
⊢
((A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ V ∧ ∪ ran {A} ∈ V)) →
A ∈
V) |
10 | 4, 9 | sylan2 270 |
. 2
⊢
((A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ B ∧ ∪ ran {A} ∈ 𝐶)) → A ∈
V) |
11 | | elxp 4305 |
. . . 4
⊢ (A ∈ (B × 𝐶) ↔ ∃x∃y(A = 〈x,
y〉 ∧
(x ∈
B ∧
y ∈ 𝐶))) |
12 | 11 | a1i 9 |
. . 3
⊢ (A ∈ V →
(A ∈
(B × 𝐶) ↔ ∃x∃y(A = 〈x,
y〉 ∧
(x ∈
B ∧
y ∈ 𝐶)))) |
13 | | sneq 3378 |
. . . . . . . . . . . . 13
⊢ (A = 〈x,
y〉 → {A} = {〈x,
y〉}) |
14 | 13 | rneqd 4506 |
. . . . . . . . . . . 12
⊢ (A = 〈x,
y〉 → ran {A} = ran {〈x, y〉}) |
15 | 14 | unieqd 3582 |
. . . . . . . . . . 11
⊢ (A = 〈x,
y〉 → ∪
ran {A} = ∪ ran
{〈x, y〉}) |
16 | | vex 2554 |
. . . . . . . . . . . 12
⊢ x ∈
V |
17 | | vex 2554 |
. . . . . . . . . . . 12
⊢ y ∈
V |
18 | 16, 17 | op2nda 4748 |
. . . . . . . . . . 11
⊢ ∪ ran {〈x,
y〉} = y |
19 | 15, 18 | syl6req 2086 |
. . . . . . . . . 10
⊢ (A = 〈x,
y〉 → y = ∪ ran {A}) |
20 | 19 | pm4.71ri 372 |
. . . . . . . . 9
⊢ (A = 〈x,
y〉 ↔ (y = ∪ ran {A} ∧ A = 〈x,
y〉)) |
21 | 20 | anbi1i 431 |
. . . . . . . 8
⊢
((A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ 𝐶)) ↔ ((y = ∪ ran {A} ∧ A = 〈x,
y〉) ∧
(x ∈
B ∧
y ∈ 𝐶))) |
22 | | anass 381 |
. . . . . . . 8
⊢
(((y = ∪
ran {A} ∧
A = 〈x, y〉)
∧ (x ∈ B ∧ y ∈ 𝐶)) ↔ (y = ∪ ran {A} ∧ (A = 〈x,
y〉 ∧
(x ∈
B ∧
y ∈ 𝐶)))) |
23 | 21, 22 | bitri 173 |
. . . . . . 7
⊢
((A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ 𝐶)) ↔ (y = ∪ ran {A} ∧ (A = 〈x,
y〉 ∧
(x ∈
B ∧
y ∈ 𝐶)))) |
24 | 23 | exbii 1493 |
. . . . . 6
⊢ (∃y(A = 〈x,
y〉 ∧
(x ∈
B ∧
y ∈ 𝐶)) ↔ ∃y(y = ∪ ran {A} ∧ (A = 〈x,
y〉 ∧
(x ∈
B ∧
y ∈ 𝐶)))) |
25 | | snexgOLD 3926 |
. . . . . . . . 9
⊢ (A ∈ V →
{A} ∈
V) |
26 | | rnexg 4540 |
. . . . . . . . 9
⊢
({A} ∈ V → ran {A} ∈
V) |
27 | 25, 26 | syl 14 |
. . . . . . . 8
⊢ (A ∈ V → ran
{A} ∈
V) |
28 | | uniexg 4141 |
. . . . . . . 8
⊢ (ran
{A} ∈ V
→ ∪ ran {A}
∈ V) |
29 | 27, 28 | syl 14 |
. . . . . . 7
⊢ (A ∈ V → ∪ ran {A} ∈ V) |
30 | | opeq2 3541 |
. . . . . . . . . 10
⊢ (y = ∪ ran {A} → 〈x, y〉 =
〈x, ∪ ran
{A}〉) |
31 | 30 | eqeq2d 2048 |
. . . . . . . . 9
⊢ (y = ∪ ran {A} → (A =
〈x, y〉 ↔ A
= 〈x, ∪ ran
{A}〉)) |
32 | | eleq1 2097 |
. . . . . . . . . 10
⊢ (y = ∪ ran {A} → (y
∈ 𝐶 ↔ ∪ ran
{A} ∈
𝐶)) |
33 | 32 | anbi2d 437 |
. . . . . . . . 9
⊢ (y = ∪ ran {A} → ((x
∈ B ∧ y ∈ 𝐶) ↔ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶))) |
34 | 31, 33 | anbi12d 442 |
. . . . . . . 8
⊢ (y = ∪ ran {A} → ((A =
〈x, y〉 ∧ (x ∈ B ∧ y ∈ 𝐶)) ↔ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
35 | 34 | ceqsexgv 2667 |
. . . . . . 7
⊢ (∪ ran {A} ∈ V → (∃y(y = ∪ ran {A} ∧ (A = 〈x,
y〉 ∧
(x ∈
B ∧
y ∈ 𝐶))) ↔ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
36 | 29, 35 | syl 14 |
. . . . . 6
⊢ (A ∈ V →
(∃y(y = ∪ ran {A} ∧ (A =
〈x, y〉 ∧ (x ∈ B ∧ y ∈ 𝐶))) ↔ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
37 | 24, 36 | syl5bb 181 |
. . . . 5
⊢ (A ∈ V →
(∃y(A =
〈x, y〉 ∧ (x ∈ B ∧ y ∈ 𝐶)) ↔ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
38 | | sneq 3378 |
. . . . . . . . . . . 12
⊢ (A = 〈x,
∪ ran {A}〉
→ {A} = {〈x, ∪ ran {A}〉}) |
39 | 38 | dmeqd 4480 |
. . . . . . . . . . 11
⊢ (A = 〈x,
∪ ran {A}〉
→ dom {A} = dom {〈x, ∪ ran {A}〉}) |
40 | 39 | unieqd 3582 |
. . . . . . . . . 10
⊢ (A = 〈x,
∪ ran {A}〉
→ ∪ dom {A}
= ∪ dom {〈x, ∪ ran {A}〉}) |
41 | 40 | adantl 262 |
. . . . . . . . 9
⊢
((A ∈ V ∧ A = 〈x,
∪ ran {A}〉)
→ ∪ dom {A}
= ∪ dom {〈x, ∪ ran {A}〉}) |
42 | | dmsnopg 4735 |
. . . . . . . . . . . . 13
⊢ (∪ ran {A} ∈ V → dom {〈x, ∪ ran {A}〉} = {x}) |
43 | 29, 42 | syl 14 |
. . . . . . . . . . . 12
⊢ (A ∈ V → dom
{〈x, ∪ ran
{A}〉} = {x}) |
44 | 43 | unieqd 3582 |
. . . . . . . . . . 11
⊢ (A ∈ V → ∪ dom {〈x, ∪ ran {A}〉} =
∪ {x}) |
45 | 16 | unisn 3587 |
. . . . . . . . . . 11
⊢ ∪ {x} = x |
46 | 44, 45 | syl6eq 2085 |
. . . . . . . . . 10
⊢ (A ∈ V → ∪ dom {〈x, ∪ ran {A}〉} =
x) |
47 | 46 | adantr 261 |
. . . . . . . . 9
⊢
((A ∈ V ∧ A = 〈x,
∪ ran {A}〉)
→ ∪ dom {〈x, ∪ ran {A}〉} = x) |
48 | 41, 47 | eqtr2d 2070 |
. . . . . . . 8
⊢
((A ∈ V ∧ A = 〈x,
∪ ran {A}〉)
→ x = ∪ dom
{A}) |
49 | 48 | ex 108 |
. . . . . . 7
⊢ (A ∈ V →
(A = 〈x, ∪ ran {A}〉 → x = ∪ dom {A})) |
50 | 49 | pm4.71rd 374 |
. . . . . 6
⊢ (A ∈ V →
(A = 〈x, ∪ ran {A}〉 ↔ (x = ∪ dom {A} ∧ A = 〈x,
∪ ran {A}〉))) |
51 | 50 | anbi1d 438 |
. . . . 5
⊢ (A ∈ V →
((A = 〈x, ∪ ran {A}〉 ∧
(x ∈
B ∧ ∪ ran {A} ∈ 𝐶)) ↔ ((x = ∪ dom {A} ∧ A = 〈x,
∪ ran {A}〉)
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
52 | | anass 381 |
. . . . . 6
⊢
(((x = ∪
dom {A} ∧
A = 〈x, ∪ ran {A}〉) ∧
(x ∈
B ∧ ∪ ran {A} ∈ 𝐶)) ↔ (x = ∪ dom {A} ∧ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
53 | 52 | a1i 9 |
. . . . 5
⊢ (A ∈ V →
(((x = ∪ dom
{A} ∧
A = 〈x, ∪ ran {A}〉) ∧
(x ∈
B ∧ ∪ ran {A} ∈ 𝐶)) ↔ (x = ∪ dom {A} ∧ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶))))) |
54 | 37, 51, 53 | 3bitrd 203 |
. . . 4
⊢ (A ∈ V →
(∃y(A =
〈x, y〉 ∧ (x ∈ B ∧ y ∈ 𝐶)) ↔ (x = ∪ dom {A} ∧ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶))))) |
55 | 54 | exbidv 1703 |
. . 3
⊢ (A ∈ V →
(∃x∃y(A = 〈x,
y〉 ∧
(x ∈
B ∧
y ∈ 𝐶)) ↔ ∃x(x = ∪ dom {A} ∧ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶))))) |
56 | | dmexg 4539 |
. . . . . 6
⊢
({A} ∈ V → dom {A} ∈
V) |
57 | 25, 56 | syl 14 |
. . . . 5
⊢ (A ∈ V → dom
{A} ∈
V) |
58 | | uniexg 4141 |
. . . . 5
⊢ (dom
{A} ∈ V
→ ∪ dom {A}
∈ V) |
59 | 57, 58 | syl 14 |
. . . 4
⊢ (A ∈ V → ∪ dom {A} ∈ V) |
60 | | opeq1 3540 |
. . . . . . 7
⊢ (x = ∪ dom {A} → 〈x, ∪ ran {A}〉 = 〈∪ dom
{A}, ∪ ran
{A}〉) |
61 | 60 | eqeq2d 2048 |
. . . . . 6
⊢ (x = ∪ dom {A} → (A =
〈x, ∪ ran
{A}〉 ↔ A = 〈∪ dom {A}, ∪ ran {A}〉)) |
62 | | eleq1 2097 |
. . . . . . 7
⊢ (x = ∪ dom {A} → (x
∈ B
↔ ∪ dom {A}
∈ B)) |
63 | 62 | anbi1d 438 |
. . . . . 6
⊢ (x = ∪ dom {A} → ((x
∈ B ∧ ∪ ran {A} ∈ 𝐶) ↔ (∪ dom {A} ∈ B ∧ ∪ ran {A} ∈ 𝐶))) |
64 | 61, 63 | anbi12d 442 |
. . . . 5
⊢ (x = ∪ dom {A} → ((A =
〈x, ∪ ran
{A}〉 ∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶)) ↔ (A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
65 | 64 | ceqsexgv 2667 |
. . . 4
⊢ (∪ dom {A} ∈ V → (∃x(x = ∪ dom {A} ∧ (A = 〈x,
∪ ran {A}〉
∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶))) ↔ (A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
66 | 59, 65 | syl 14 |
. . 3
⊢ (A ∈ V →
(∃x(x = ∪ dom {A} ∧ (A =
〈x, ∪ ran
{A}〉 ∧ (x ∈ B ∧ ∪ ran {A} ∈ 𝐶))) ↔ (A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
67 | 12, 55, 66 | 3bitrd 203 |
. 2
⊢ (A ∈ V →
(A ∈
(B × 𝐶) ↔ (A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ B ∧ ∪ ran {A} ∈ 𝐶)))) |
68 | 1, 10, 67 | pm5.21nii 619 |
1
⊢ (A ∈ (B × 𝐶) ↔ (A = 〈∪ dom {A}, ∪ ran {A}〉 ∧ (∪ dom {A} ∈ B ∧ ∪ ran {A} ∈ 𝐶))) |