ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemss GIF version

Theorem ennnfonelemss 11923
Description: Lemma for ennnfone 11938. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemss.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemss (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑃 + 1)))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑃,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemss
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . 6 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . 6 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . 6 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . 6 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . 6 𝐻 = seq0(𝐺, 𝐽)
8 ennnfonelemss.p . . . . . 6 (𝜑𝑃 ∈ ℕ0)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemp1 11919 . . . . 5 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
109adantr 274 . . . 4 ((𝜑 ∧ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
11 simpr 109 . . . . 5 ((𝜑 ∧ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
1211iftrued 3481 . . . 4 ((𝜑 ∧ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) = (𝐻𝑃))
1310, 12eqtrd 2172 . . 3 ((𝜑 ∧ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → (𝐻‘(𝑃 + 1)) = (𝐻𝑃))
14 eqimss2 3152 . . 3 ((𝐻‘(𝑃 + 1)) = (𝐻𝑃) → (𝐻𝑃) ⊆ (𝐻‘(𝑃 + 1)))
1513, 14syl 14 . 2 ((𝜑 ∧ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → (𝐻𝑃) ⊆ (𝐻‘(𝑃 + 1)))
16 ssun1 3239 . . 3 (𝐻𝑃) ⊆ ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})
179adantr 274 . . . 4 ((𝜑 ∧ ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
18 simpr 109 . . . . 5 ((𝜑 ∧ ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
1918iffalsed 3484 . . . 4 ((𝜑 ∧ ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
2017, 19eqtrd 2172 . . 3 ((𝜑 ∧ ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → (𝐻‘(𝑃 + 1)) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
2116, 20sseqtrrid 3148 . 2 ((𝜑 ∧ ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))) → (𝐻𝑃) ⊆ (𝐻‘(𝑃 + 1)))
225frechashgf1o 10201 . . . . . . 7 𝑁:ω–1-1-onto→ℕ0
23 f1ocnv 5380 . . . . . . 7 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
24 f1of 5367 . . . . . . 7 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
2522, 23, 24mp2b 8 . . . . . 6 𝑁:ℕ0⟶ω
2625a1i 9 . . . . 5 (𝜑𝑁:ℕ0⟶ω)
2726, 8ffvelrnd 5556 . . . 4 (𝜑 → (𝑁𝑃) ∈ ω)
281, 2, 27ennnfonelemdc 11912 . . 3 (𝜑DECID (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
29 exmiddc 821 . . 3 (DECID (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)) → ((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)) ∨ ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))))
3028, 29syl 14 . 2 (𝜑 → ((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)) ∨ ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))))
3115, 21, 30mpjaodan 787 1 (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑃 + 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wral 2416  wrex 2417  cun 3069  wss 3071  c0 3363  ifcif 3474  {csn 3527  cop 3530  cmpt 3989  suc csuc 4287  ωcom 4504  ccnv 4538  dom cdm 4539  cima 4542  wf 5119  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  cmpo 5776  freccfrec 6287  pm cpm 6543  0cc0 7620  1c1 7621   + caddc 7623  cmin 7933  0cn0 8977  cz 9054  seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pm 6545  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219
This theorem is referenced by:  ennnfoneleminc  11924
  Copyright terms: Public domain W3C validator