ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemp1 GIF version

Theorem ennnfonelemp1 11919
Description: Lemma for ennnfone 11938. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemp1.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemp1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑃,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemp1.p . . . . 5 (𝜑𝑃 ∈ ℕ0)
2 nn0uz 9360 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2232 . . . 4 (𝜑𝑃 ∈ (ℤ‘0))
4 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
6 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
7 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
8 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
10 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
114, 5, 6, 7, 8, 9, 10ennnfonelemj0 11914 . . . 4 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
124, 5, 6, 7, 8, 9, 10ennnfonelemg 11916 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
134, 5, 6, 7, 8, 9, 10ennnfonelemjn 11915 . . . 4 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
143, 11, 12, 13seqp1cd 10239 . . 3 (𝜑 → (seq0(𝐺, 𝐽)‘(𝑃 + 1)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
1510fveq1i 5422 . . . 4 (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1))
1615a1i 9 . . 3 (𝜑 → (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1)))
1710fveq1i 5422 . . . . 5 (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃)
1817a1i 9 . . . 4 (𝜑 → (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃))
19 eqeq1 2146 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑥 = 0 ↔ (𝑃 + 1) = 0))
20 fvoveq1 5797 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑁‘(𝑥 − 1)) = (𝑁‘((𝑃 + 1) − 1)))
2119, 20ifbieq2d 3496 . . . . . 6 (𝑥 = (𝑃 + 1) → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
22 peano2nn0 9017 . . . . . . 7 (𝑃 ∈ ℕ0 → (𝑃 + 1) ∈ ℕ0)
231, 22syl 14 . . . . . 6 (𝜑 → (𝑃 + 1) ∈ ℕ0)
24 nn0p1gt0 9006 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → 0 < (𝑃 + 1))
2524gt0ne0d 8274 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → (𝑃 + 1) ≠ 0)
2625neneqd 2329 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ¬ (𝑃 + 1) = 0)
2726iffalsed 3484 . . . . . . . . 9 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁‘((𝑃 + 1) − 1)))
28 nn0cn 8987 . . . . . . . . . . 11 (𝑃 ∈ ℕ0𝑃 ∈ ℂ)
29 1cnd 7782 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → 1 ∈ ℂ)
3028, 29pncand 8074 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ((𝑃 + 1) − 1) = 𝑃)
3130fveq2d 5425 . . . . . . . . 9 (𝑃 ∈ ℕ0 → (𝑁‘((𝑃 + 1) − 1)) = (𝑁𝑃))
3227, 31eqtrd 2172 . . . . . . . 8 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
338frechashgf1o 10201 . . . . . . . . . . 11 𝑁:ω–1-1-onto→ℕ0
34 f1ocnv 5380 . . . . . . . . . . 11 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
3533, 34ax-mp 5 . . . . . . . . . 10 𝑁:ℕ01-1-onto→ω
36 f1of 5367 . . . . . . . . . 10 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
3735, 36mp1i 10 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑁:ℕ0⟶ω)
38 id 19 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑃 ∈ ℕ0)
3937, 38ffvelrnd 5556 . . . . . . . 8 (𝑃 ∈ ℕ0 → (𝑁𝑃) ∈ ω)
4032, 39eqeltrd 2216 . . . . . . 7 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
411, 40syl 14 . . . . . 6 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
429, 21, 23, 41fvmptd3 5514 . . . . 5 (𝜑 → (𝐽‘(𝑃 + 1)) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
431, 32syl 14 . . . . 5 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
4442, 43eqtr2d 2173 . . . 4 (𝜑 → (𝑁𝑃) = (𝐽‘(𝑃 + 1)))
4518, 44oveq12d 5792 . . 3 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
4614, 16, 453eqtr4d 2182 . 2 (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻𝑃)𝐺(𝑁𝑃)))
474, 5, 6, 7, 8, 9, 10ennnfonelemh 11917 . . . 4 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
4847, 1ffvelrnd 5556 . . 3 (𝜑 → (𝐻𝑃) ∈ (𝐴pm ω))
491, 39syl 14 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
5048elexd 2699 . . . 4 (𝜑 → (𝐻𝑃) ∈ V)
51 dmexg 4803 . . . . . . . 8 ((𝐻𝑃) ∈ V → dom (𝐻𝑃) ∈ V)
5250, 51syl 14 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ V)
53 fof 5345 . . . . . . . . 9 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
545, 53syl 14 . . . . . . . 8 (𝜑𝐹:ω⟶𝐴)
5554, 49ffvelrnd 5556 . . . . . . 7 (𝜑 → (𝐹‘(𝑁𝑃)) ∈ 𝐴)
56 opexg 4150 . . . . . . 7 ((dom (𝐻𝑃) ∈ V ∧ (𝐹‘(𝑁𝑃)) ∈ 𝐴) → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
5752, 55, 56syl2anc 408 . . . . . 6 (𝜑 → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
58 snexg 4108 . . . . . 6 (⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
5957, 58syl 14 . . . . 5 (𝜑 → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
60 unexg 4364 . . . . 5 (((𝐻𝑃) ∈ V ∧ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
6150, 59, 60syl2anc 408 . . . 4 (𝜑 → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
624, 5, 49ennnfonelemdc 11912 . . . 4 (𝜑DECID (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
6350, 61, 62ifcldcd 3507 . . 3 (𝜑 → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V)
64 id 19 . . . . 5 (𝑥 = (𝐻𝑃) → 𝑥 = (𝐻𝑃))
65 dmeq 4739 . . . . . . . 8 (𝑥 = (𝐻𝑃) → dom 𝑥 = dom (𝐻𝑃))
6665opeq1d 3711 . . . . . . 7 (𝑥 = (𝐻𝑃) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹𝑦)⟩)
6766sneqd 3540 . . . . . 6 (𝑥 = (𝐻𝑃) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})
6864, 67uneq12d 3231 . . . . 5 (𝑥 = (𝐻𝑃) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}))
6964, 68ifeq12d 3491 . . . 4 (𝑥 = (𝐻𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})))
70 fveq2 5421 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹‘(𝑁𝑃)))
71 imaeq2 4877 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹 “ (𝑁𝑃)))
7270, 71eleq12d 2210 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))))
7370opeq2d 3712 . . . . . . 7 (𝑦 = (𝑁𝑃) → ⟨dom (𝐻𝑃), (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩)
7473sneqd 3540 . . . . . 6 (𝑦 = (𝑁𝑃) → {⟨dom (𝐻𝑃), (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})
7574uneq2d 3230 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
7672, 75ifbieq2d 3496 . . . 4 (𝑦 = (𝑁𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7769, 76, 7ovmpog 5905 . . 3 (((𝐻𝑃) ∈ (𝐴pm ω) ∧ (𝑁𝑃) ∈ ω ∧ if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V) → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7848, 49, 63, 77syl3anc 1216 . 2 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7946, 78eqtrd 2172 1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wral 2416  wrex 2417  {crab 2420  Vcvv 2686  cun 3069  c0 3363  ifcif 3474  {csn 3527  cop 3530  cmpt 3989  suc csuc 4287  ωcom 4504  ccnv 4538  dom cdm 4539  cima 4542  wf 5119  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  cmpo 5776  freccfrec 6287  pm cpm 6543  0cc0 7620  1c1 7621   + caddc 7623  cmin 7933  0cn0 8977  cz 9054  cuz 9326  seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pm 6545  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219
This theorem is referenced by:  ennnfonelem1  11920  ennnfonelemhdmp1  11922  ennnfonelemss  11923  ennnfonelemkh  11925  ennnfonelemhf1o  11926
  Copyright terms: Public domain W3C validator