ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcnvres GIF version

Theorem fcnvres 5100
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
fcnvres (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))

Proof of Theorem fcnvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4730 . 2 Rel (𝐹𝐴)
2 relres 4666 . 2 Rel (𝐹𝐵)
3 opelf 5089 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥𝐴𝑦𝐵))
43simpld 109 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
54ex 112 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
65pm4.71d 379 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴)))
7 vex 2577 . . . . . 6 𝑦 ∈ V
8 vex 2577 . . . . . 6 𝑥 ∈ V
97, 8opelcnv 4544 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴))
107opelres 4644 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
119, 10bitri 177 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
126, 11syl6bbr 191 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴)))
133simprd 111 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
1413ex 112 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
1514pm4.71d 379 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵)))
168opelres 4644 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐹𝑦𝐵))
177, 8opelcnv 4544 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1817anbi1i 439 . . . . 5 ((⟨𝑦, 𝑥⟩ ∈ 𝐹𝑦𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
1916, 18bitri 177 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
2015, 19syl6bbr 191 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
2112, 20bitr3d 183 . 2 (𝐹:𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
221, 2, 21eqrelrdv 4463 1 (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  cop 3405  ccnv 4371  cres 4374  wf 4925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-xp 4378  df-rel 4379  df-cnv 4380  df-dm 4382  df-rn 4383  df-res 4384  df-fun 4931  df-fn 4932  df-f 4933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator