ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqmulnn0 GIF version

Theorem flqmulnn0 9381
Description: Move a nonnegative integer in and out of a floor. (Contributed by Jim Kingdon, 10-Oct-2021.)
Assertion
Ref Expression
flqmulnn0 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))

Proof of Theorem flqmulnn0
StepHypRef Expression
1 flqcl 9355 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
21adantl 271 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (⌊‘𝐴) ∈ ℤ)
32zred 8550 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (⌊‘𝐴) ∈ ℝ)
4 qre 8791 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
54adantl 271 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → 𝐴 ∈ ℝ)
6 simpl 107 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → 𝑁 ∈ ℕ0)
76nn0red 8409 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → 𝑁 ∈ ℝ)
86nn0ge0d 8411 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → 0 ≤ 𝑁)
9 flqle 9360 . . . 4 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
109adantl 271 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (⌊‘𝐴) ≤ 𝐴)
113, 5, 7, 8, 10lemul2ad 8085 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴))
12 nn0z 8452 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 zq 8792 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
1412, 13syl 14 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℚ)
15 qmulcl 8803 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
1614, 15sylan 277 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
17 zmulcl 8485 . . . 4 ((𝑁 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ)
1812, 1, 17syl2an 283 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ)
19 flqge 9364 . . 3 (((𝑁 · 𝐴) ∈ ℚ ∧ (𝑁 · (⌊‘𝐴)) ∈ ℤ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))))
2016, 18, 19syl2anc 403 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))))
2111, 20mpbid 145 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1434   class class class wbr 3793  cfv 4932  (class class class)co 5543  cr 7042   · cmul 7048  cle 7216  0cn0 8355  cz 8432  cq 8785  cfl 9350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156  ax-arch 7157
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-n0 8356  df-z 8433  df-q 8786  df-rp 8816  df-fl 9352
This theorem is referenced by:  modqmulnn  9424
  Copyright terms: Public domain W3C validator