![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0red | GIF version |
Description: A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0red | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 8359 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sseldi 2998 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ℝcr 7042 ℕ0cn0 8355 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 ax-rnegex 7147 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-int 3645 df-inn 8107 df-n0 8356 |
This theorem is referenced by: nn0cnd 8410 nn0readdcl 8414 nn01to3 8783 flqmulnn0 9381 modifeq2int 9468 modaddmodup 9469 modaddmodlo 9470 modsumfzodifsn 9478 expnegap0 9581 nn0le2msqd 9743 nn0opthlem2d 9745 nn0opthd 9746 faclbnd6 9768 ibcval5 9787 filtinf 9816 oddge22np1 10425 nn0oddm1d2 10453 gcdaddm 10519 bezoutlemsup 10542 gcdzeq 10555 dvdssqlem 10563 nn0seqcvgd 10567 lcmneg 10600 mulgcddvds 10620 qredeu 10623 pw2dvdseulemle 10689 pw2dvdseu 10690 |
Copyright terms: Public domain | W3C validator |