ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mkvprop GIF version

Theorem mkvprop 7032
Description: Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
Assertion
Ref Expression
mkvprop ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem mkvprop
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . . . . 7 𝑛 𝐴 ∈ Markov
2 nfra1 2466 . . . . . . 7 𝑛𝑛𝐴 DECID 𝜑
31, 2nfan 1544 . . . . . 6 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑)
4 simpr 109 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5 0lt2o 6338 . . . . . . . . . . . 12 ∅ ∈ 2o
65a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → ∅ ∈ 2o)
7 1lt2o 6339 . . . . . . . . . . . 12 1o ∈ 2o
87a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → 1o ∈ 2o)
9 rsp 2480 . . . . . . . . . . . 12 (∀𝑛𝐴 DECID 𝜑 → (𝑛𝐴DECID 𝜑))
109imp 123 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → DECID 𝜑)
116, 8, 10ifcldcd 3507 . . . . . . . . . 10 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
1211adantll 467 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
13 eqid 2139 . . . . . . . . . 10 (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
1413fvmpt2 5504 . . . . . . . . 9 ((𝑛𝐴 ∧ if(𝜑, ∅, 1o) ∈ 2o) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
154, 12, 14syl2anc 408 . . . . . . . 8 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
1615eqeq1d 2148 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o ↔ if(𝜑, ∅, 1o) = 1o))
17 1n0 6329 . . . . . . . . . 10 1o ≠ ∅
1817nesymi 2354 . . . . . . . . 9 ¬ ∅ = 1o
19 iftrue 3479 . . . . . . . . . 10 (𝜑 → if(𝜑, ∅, 1o) = ∅)
2019eqeq1d 2148 . . . . . . . . 9 (𝜑 → (if(𝜑, ∅, 1o) = 1o ↔ ∅ = 1o))
2118, 20mtbiri 664 . . . . . . . 8 (𝜑 → ¬ if(𝜑, ∅, 1o) = 1o)
2221con2i 616 . . . . . . 7 (if(𝜑, ∅, 1o) = 1o → ¬ 𝜑)
2316, 22syl6bi 162 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ¬ 𝜑))
243, 23ralimdaa 2498 . . . . 5 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∀𝑛𝐴 ¬ 𝜑))
2524con3d 620 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (¬ ∀𝑛𝐴 ¬ 𝜑 → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
26253impia 1178 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o)
27 mptexg 5645 . . . . 5 (𝐴 ∈ Markov → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
28273ad2ant1 1002 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
29 ismkv 7027 . . . . . 6 (𝐴 ∈ Markov → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅))))
3029ibi 175 . . . . 5 (𝐴 ∈ Markov → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
31303ad2ant1 1002 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
32 nfra1 2466 . . . . . . 7 𝑛𝑛𝐴 ¬ 𝜑
3332nfn 1636 . . . . . 6 𝑛 ¬ ∀𝑛𝐴 ¬ 𝜑
341, 2, 33nf3an 1545 . . . . 5 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑)
35113ad2antl2 1144 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
3634, 35, 13fmptdf 5577 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o)
37 feq1 5255 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓:𝐴⟶2o ↔ (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o))
38 nfmpt1 4021 . . . . . . . . . 10 𝑛(𝑛𝐴 ↦ if(𝜑, ∅, 1o))
3938nfeq2 2293 . . . . . . . . 9 𝑛 𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
40 fveq1 5420 . . . . . . . . . 10 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓𝑛) = ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛))
4140eqeq1d 2148 . . . . . . . . 9 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = 1o ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4239, 41ralbid 2435 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4342notbid 656 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4440eqeq1d 2148 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = ∅ ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4539, 44rexbid 2436 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∃𝑛𝐴 (𝑓𝑛) = ∅ ↔ ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4643, 45imbi12d 233 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅) ↔ (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))
4737, 46imbi12d 233 . . . . 5 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4847spcgv 2773 . . . 4 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4928, 31, 36, 48syl3c 63 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
5026, 49mpd 13 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)
51 simpr 109 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5251, 35, 14syl2anc 408 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
5352eqeq1d 2148 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ if(𝜑, ∅, 1o) = ∅))
5493ad2ant2 1003 . . . . . . 7 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴DECID 𝜑))
5554imp 123 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → DECID 𝜑)
5617neii 2310 . . . . . . . . 9 ¬ 1o = ∅
57 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ 𝜑)
5857iffalsed 3484 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → if(𝜑, ∅, 1o) = 1o)
5958eqeq1d 2148 . . . . . . . . 9 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → (if(𝜑, ∅, 1o) = ∅ ↔ 1o = ∅))
6056, 59mtbiri 664 . . . . . . . 8 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, ∅, 1o) = ∅)
6160ex 114 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (¬ 𝜑 → ¬ if(𝜑, ∅, 1o) = ∅))
6261con2d 613 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → ¬ ¬ 𝜑))
63 notnotrdc 828 . . . . . 6 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
6455, 62, 63sylsyld 58 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → 𝜑))
6564, 19impbid1 141 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ ↔ 𝜑))
6653, 65bitrd 187 . . 3 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ 𝜑))
6734, 66rexbida 2432 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ ∃𝑛𝐴 𝜑))
6850, 67mpbid 146 1 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 819  w3a 962  wal 1329   = wceq 1331  wcel 1480  wral 2416  wrex 2417  Vcvv 2686  c0 3363  ifcif 3474  cmpt 3989  wf 5119  cfv 5123  1oc1o 6306  2oc2o 6307  Markovcmarkov 7025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-2o 6314  df-markov 7026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator