ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeqcnvco GIF version

Theorem foeqcnvco 5457
Description: Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
foeqcnvco ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))

Proof of Theorem foeqcnvco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fococnv2 5179 . . . 4 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2 cnveq 4536 . . . . . 6 (𝐹 = 𝐺𝐹 = 𝐺)
32coeq2d 4525 . . . . 5 (𝐹 = 𝐺 → (𝐹𝐹) = (𝐹𝐺))
43eqeq1d 2064 . . . 4 (𝐹 = 𝐺 → ((𝐹𝐹) = ( I ↾ 𝐵) ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
51, 4syl5ibcom 148 . . 3 (𝐹:𝐴onto𝐵 → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐵)))
65adantr 265 . 2 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐵)))
7 fofn 5135 . . . . 5 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
87ad2antrr 465 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 Fn 𝐴)
9 fofn 5135 . . . . 5 (𝐺:𝐴onto𝐵𝐺 Fn 𝐴)
109ad2antlr 466 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺 Fn 𝐴)
119adantl 266 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐺 Fn 𝐴)
12 fnopfv 5324 . . . . . . . . . . . 12 ((𝐺 Fn 𝐴𝑥𝐴) → ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
1311, 12sylan 271 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
149anim1i 327 . . . . . . . . . . . . 13 ((𝐺:𝐴onto𝐵𝑥𝐴) → (𝐺 Fn 𝐴𝑥𝐴))
1514adantll 453 . . . . . . . . . . . 12 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺 Fn 𝐴𝑥𝐴))
16 funfvex 5219 . . . . . . . . . . . . . . 15 ((Fun 𝐺𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
1716funfni 5026 . . . . . . . . . . . . . 14 ((𝐺 Fn 𝐴𝑥𝐴) → (𝐺𝑥) ∈ V)
18 vex 2577 . . . . . . . . . . . . . 14 𝑥 ∈ V
19 brcnvg 4543 . . . . . . . . . . . . . 14 (((𝐺𝑥) ∈ V ∧ 𝑥 ∈ V) → ((𝐺𝑥)𝐺𝑥𝑥𝐺(𝐺𝑥)))
2017, 18, 19sylancl 398 . . . . . . . . . . . . 13 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥)𝐺𝑥𝑥𝐺(𝐺𝑥)))
21 df-br 3792 . . . . . . . . . . . . 13 (𝑥𝐺(𝐺𝑥) ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
2220, 21syl6bb 189 . . . . . . . . . . . 12 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥)𝐺𝑥 ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺))
2315, 22syl 14 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥)𝐺𝑥 ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺))
2413, 23mpbird 160 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥)𝐺𝑥)
257adantr 265 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐹 Fn 𝐴)
26 fnopfv 5324 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
2725, 26sylan 271 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
28 df-br 3792 . . . . . . . . . . 11 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
2927, 28sylibr 141 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
30 breq2 3795 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐺𝑥)𝐺𝑦 ↔ (𝐺𝑥)𝐺𝑥))
31 breq1 3794 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐹(𝐹𝑥) ↔ 𝑥𝐹(𝐹𝑥)))
3230, 31anbi12d 450 . . . . . . . . . . 11 (𝑦 = 𝑥 → (((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)) ↔ ((𝐺𝑥)𝐺𝑥𝑥𝐹(𝐹𝑥))))
3318, 32spcev 2664 . . . . . . . . . 10 (((𝐺𝑥)𝐺𝑥𝑥𝐹(𝐹𝑥)) → ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
3424, 29, 33syl2anc 397 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
3515, 17syl 14 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ V)
367anim1i 327 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝐹 Fn 𝐴𝑥𝐴))
3736adantlr 454 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐹 Fn 𝐴𝑥𝐴))
38 funfvex 5219 . . . . . . . . . . . 12 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
3938funfni 5026 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
4037, 39syl 14 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ V)
41 brcog 4529 . . . . . . . . . 10 (((𝐺𝑥) ∈ V ∧ (𝐹𝑥) ∈ V) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥))))
4235, 40, 41syl2anc 397 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥))))
4334, 42mpbird 160 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥)(𝐹𝐺)(𝐹𝑥))
4443adantlr 454 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥)(𝐹𝐺)(𝐹𝑥))
45 breq 3793 . . . . . . . 8 ((𝐹𝐺) = ( I ↾ 𝐵) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥)))
4645ad2antlr 466 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥)))
4744, 46mpbid 139 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥))
48 fof 5133 . . . . . . . . . 10 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
4948adantl 266 . . . . . . . . 9 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐺:𝐴𝐵)
5049ffvelrnda 5329 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
51 fof 5133 . . . . . . . . . 10 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
5251adantr 265 . . . . . . . . 9 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐹:𝐴𝐵)
5352ffvelrnda 5329 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
54 resieq 4649 . . . . . . . 8 (((𝐺𝑥) ∈ 𝐵 ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
5550, 53, 54syl2anc 397 . . . . . . 7 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
5655adantlr 454 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
5747, 56mpbid 139 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹𝑥))
5857eqcomd 2061 . . . 4 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
598, 10, 58eqfnfvd 5295 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺)
6059ex 112 . 2 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → ((𝐹𝐺) = ( I ↾ 𝐵) → 𝐹 = 𝐺))
616, 60impbid 124 1 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  Vcvv 2574  cop 3405   class class class wbr 3791   I cid 4052  ccnv 4371  cres 4374  ccom 4376   Fn wfn 4924  wf 4925  ontowfo 4927  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-csb 2880  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-fo 4935  df-fv 4937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator