ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashiun GIF version

Theorem hashiun 11247
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1 (𝜑𝐴 ∈ Fin)
fsumiun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiun.3 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
hashiun (𝜑 → (♯‘ 𝑥𝐴 𝐵) = Σ𝑥𝐴 (♯‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem hashiun
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fsumiun.1 . . 3 (𝜑𝐴 ∈ Fin)
2 fsumiun.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
3 fsumiun.3 . . 3 (𝜑Disj 𝑥𝐴 𝐵)
4 1cnd 7782 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 1 ∈ ℂ)
51, 2, 3, 4fsumiun 11246 . 2 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = Σ𝑥𝐴 Σ𝑘𝐵 1)
62ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
7 iunfidisj 6834 . . . . 5 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
81, 6, 3, 7syl3anc 1216 . . . 4 (𝜑 𝑥𝐴 𝐵 ∈ Fin)
9 ax-1cn 7713 . . . 4 1 ∈ ℂ
10 fsumconst 11223 . . . 4 (( 𝑥𝐴 𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 𝑥𝐴 𝐵1 = ((♯‘ 𝑥𝐴 𝐵) · 1))
118, 9, 10sylancl 409 . . 3 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = ((♯‘ 𝑥𝐴 𝐵) · 1))
12 hashcl 10527 . . . 4 ( 𝑥𝐴 𝐵 ∈ Fin → (♯‘ 𝑥𝐴 𝐵) ∈ ℕ0)
13 nn0cn 8987 . . . 4 ((♯‘ 𝑥𝐴 𝐵) ∈ ℕ0 → (♯‘ 𝑥𝐴 𝐵) ∈ ℂ)
14 mulid1 7763 . . . 4 ((♯‘ 𝑥𝐴 𝐵) ∈ ℂ → ((♯‘ 𝑥𝐴 𝐵) · 1) = (♯‘ 𝑥𝐴 𝐵))
158, 12, 13, 144syl 18 . . 3 (𝜑 → ((♯‘ 𝑥𝐴 𝐵) · 1) = (♯‘ 𝑥𝐴 𝐵))
1611, 15eqtrd 2172 . 2 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = (♯‘ 𝑥𝐴 𝐵))
17 fsumconst 11223 . . . . 5 ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘𝐵 1 = ((♯‘𝐵) · 1))
182, 9, 17sylancl 409 . . . 4 ((𝜑𝑥𝐴) → Σ𝑘𝐵 1 = ((♯‘𝐵) · 1))
19 hashcl 10527 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
20 nn0cn 8987 . . . . 5 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
21 mulid1 7763 . . . . 5 ((♯‘𝐵) ∈ ℂ → ((♯‘𝐵) · 1) = (♯‘𝐵))
222, 19, 20, 214syl 18 . . . 4 ((𝜑𝑥𝐴) → ((♯‘𝐵) · 1) = (♯‘𝐵))
2318, 22eqtrd 2172 . . 3 ((𝜑𝑥𝐴) → Σ𝑘𝐵 1 = (♯‘𝐵))
2423sumeq2dv 11137 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑘𝐵 1 = Σ𝑥𝐴 (♯‘𝐵))
255, 16, 243eqtr3d 2180 1 (𝜑 → (♯‘ 𝑥𝐴 𝐵) = Σ𝑥𝐴 (♯‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416   ciun 3813  Disj wdisj 3906  cfv 5123  (class class class)co 5774  Fincfn 6634  cc 7618  1c1 7621   · cmul 7625  0cn0 8977  chash 10521  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  hash2iun  11248  hashrabrex  11250  hashuni  11251
  Copyright terms: Public domain W3C validator