ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul1 GIF version

Theorem lemul1 7522
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
lemul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))

Proof of Theorem lemul1
StepHypRef Expression
1 ltmul1 7521 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
21notbid 592 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
323com12 1108 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
4 lenlt 7036 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
543adant3 924 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
6 simp1 904 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ)
7 simp3l 932 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
86, 7remulcld 6998 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 · 𝐶) ∈ ℝ)
9 simp2 905 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℝ)
109, 7remulcld 6998 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 · 𝐶) ∈ ℝ)
118, 10lenltd 7076 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ ¬ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
123, 5, 113bitr4d 209 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  w3a 885  wcel 1393   class class class wbr 3760  (class class class)co 5473  cr 6831  0cc0 6832   · cmul 6837   < clt 7002  cle 7003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3871  ax-pow 3923  ax-pr 3940  ax-un 4141  ax-setind 4230  ax-cnex 6918  ax-resscn 6919  ax-1cn 6920  ax-1re 6921  ax-icn 6922  ax-addcl 6923  ax-addrcl 6924  ax-mulcl 6925  ax-mulrcl 6926  ax-addcom 6927  ax-mulcom 6928  ax-addass 6929  ax-mulass 6930  ax-distr 6931  ax-i2m1 6932  ax-1rid 6934  ax-0id 6935  ax-rnegex 6936  ax-precex 6937  ax-cnre 6938  ax-pre-ltadd 6943  ax-pre-mulgt0 6944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3577  df-br 3761  df-opab 3815  df-id 4026  df-xp 4312  df-rel 4313  df-cnv 4314  df-co 4315  df-dm 4316  df-iota 4828  df-fun 4865  df-fv 4871  df-riota 5429  df-ov 5476  df-oprab 5477  df-mpt2 5478  df-pnf 7004  df-mnf 7005  df-xr 7006  df-ltxr 7007  df-le 7008  df-sub 7126  df-neg 7127
This theorem is referenced by:  lemul2  7761  lediv23  7797  lemul1i  7828  lemul1d  8595  iccdil  8795  expgt1  9133
  Copyright terms: Public domain W3C validator