ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facubnd GIF version

Theorem facubnd 9613
Description: An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
facubnd (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))

Proof of Theorem facubnd
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5206 . . . 4 (𝑚 = 0 → (!‘𝑚) = (!‘0))
2 fac0 9596 . . . 4 (!‘0) = 1
31, 2syl6eq 2104 . . 3 (𝑚 = 0 → (!‘𝑚) = 1)
4 id 19 . . . . 5 (𝑚 = 0 → 𝑚 = 0)
54, 4oveq12d 5558 . . . 4 (𝑚 = 0 → (𝑚𝑚) = (0↑0))
6 0exp0e1 9425 . . . 4 (0↑0) = 1
75, 6syl6eq 2104 . . 3 (𝑚 = 0 → (𝑚𝑚) = 1)
83, 7breq12d 3805 . 2 (𝑚 = 0 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ 1 ≤ 1))
9 fveq2 5206 . . 3 (𝑚 = 𝑘 → (!‘𝑚) = (!‘𝑘))
10 id 19 . . . 4 (𝑚 = 𝑘𝑚 = 𝑘)
1110, 10oveq12d 5558 . . 3 (𝑚 = 𝑘 → (𝑚𝑚) = (𝑘𝑘))
129, 11breq12d 3805 . 2 (𝑚 = 𝑘 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑘) ≤ (𝑘𝑘)))
13 fveq2 5206 . . 3 (𝑚 = (𝑘 + 1) → (!‘𝑚) = (!‘(𝑘 + 1)))
14 id 19 . . . 4 (𝑚 = (𝑘 + 1) → 𝑚 = (𝑘 + 1))
1514, 14oveq12d 5558 . . 3 (𝑚 = (𝑘 + 1) → (𝑚𝑚) = ((𝑘 + 1)↑(𝑘 + 1)))
1613, 15breq12d 3805 . 2 (𝑚 = (𝑘 + 1) → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
17 fveq2 5206 . . 3 (𝑚 = 𝑁 → (!‘𝑚) = (!‘𝑁))
18 id 19 . . . 4 (𝑚 = 𝑁𝑚 = 𝑁)
1918, 18oveq12d 5558 . . 3 (𝑚 = 𝑁 → (𝑚𝑚) = (𝑁𝑁))
2017, 19breq12d 3805 . 2 (𝑚 = 𝑁 → ((!‘𝑚) ≤ (𝑚𝑚) ↔ (!‘𝑁) ≤ (𝑁𝑁)))
21 1le1 7637 . 2 1 ≤ 1
22 faccl 9603 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2322adantr 265 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℕ)
2423nnred 8003 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ∈ ℝ)
25 nn0re 8248 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
2625adantr 265 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℝ)
27 simpl 106 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ∈ ℕ0)
2826, 27reexpcld 9566 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ∈ ℝ)
29 nn0p1nn 8278 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3029adantr 265 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℕ)
3130nnred 8003 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℝ)
3231, 27reexpcld 9566 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑𝑘) ∈ ℝ)
33 simpr 107 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ (𝑘𝑘))
34 nn0ge0 8264 . . . . . . . 8 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
3534adantr 265 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 ≤ 𝑘)
3626lep1d 7972 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 𝑘 ≤ (𝑘 + 1))
37 leexp1a 9475 . . . . . . 7 (((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ 𝑘𝑘 ≤ (𝑘 + 1))) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3826, 31, 27, 35, 36, 37syl32anc 1154 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘𝑘) ≤ ((𝑘 + 1)↑𝑘))
3924, 28, 32, 33, 38letrd 7199 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘𝑘) ≤ ((𝑘 + 1)↑𝑘))
4030nngt0d 8033 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → 0 < (𝑘 + 1))
41 lemul1 7658 . . . . . 6 (((!‘𝑘) ∈ ℝ ∧ ((𝑘 + 1)↑𝑘) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4224, 32, 31, 40, 41syl112anc 1150 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) ≤ ((𝑘 + 1)↑𝑘) ↔ ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1))))
4339, 42mpbid 139 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((!‘𝑘) · (𝑘 + 1)) ≤ (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
44 facp1 9598 . . . . 5 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4544adantr 265 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4630nncnd 8004 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (𝑘 + 1) ∈ ℂ)
4746, 27expp1d 9550 . . . 4 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → ((𝑘 + 1)↑(𝑘 + 1)) = (((𝑘 + 1)↑𝑘) · (𝑘 + 1)))
4843, 45, 473brtr4d 3822 . . 3 ((𝑘 ∈ ℕ0 ∧ (!‘𝑘) ≤ (𝑘𝑘)) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1)))
4948ex 112 . 2 (𝑘 ∈ ℕ0 → ((!‘𝑘) ≤ (𝑘𝑘) → (!‘(𝑘 + 1)) ≤ ((𝑘 + 1)↑(𝑘 + 1))))
508, 12, 16, 20, 21, 49nn0ind 8411 1 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409   class class class wbr 3792  cfv 4930  (class class class)co 5540  cr 6946  0cc0 6947  1c1 6948   + caddc 6950   · cmul 6952   < clt 7119  cle 7120  cn 7990  0cn0 8239  cexp 9419  !cfa 9593
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-if 3360  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-iseq 9376  df-iexp 9420  df-fac 9594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator