ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmord GIF version

Theorem nnmord 6120
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmord ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Proof of Theorem nnmord
StepHypRef Expression
1 nnmordi 6119 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
21ex 112 . . . . 5 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
32com23 76 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
43impd 246 . . 3 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
543adant1 933 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
6 ne0i 3257 . . . . . . . 8 ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (𝐶 ·𝑜 𝐵) ≠ ∅)
7 nnm0r 6088 . . . . . . . . . 10 (𝐵 ∈ ω → (∅ ·𝑜 𝐵) = ∅)
8 oveq1 5546 . . . . . . . . . . 11 (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
98eqeq1d 2064 . . . . . . . . . 10 (𝐶 = ∅ → ((𝐶 ·𝑜 𝐵) = ∅ ↔ (∅ ·𝑜 𝐵) = ∅))
107, 9syl5ibrcom 150 . . . . . . . . 9 (𝐵 ∈ ω → (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = ∅))
1110necon3d 2264 . . . . . . . 8 (𝐵 ∈ ω → ((𝐶 ·𝑜 𝐵) ≠ ∅ → 𝐶 ≠ ∅))
126, 11syl5 32 . . . . . . 7 (𝐵 ∈ ω → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐶 ≠ ∅))
1312adantr 265 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐶 ≠ ∅))
14 nn0eln0 4368 . . . . . . 7 (𝐶 ∈ ω → (∅ ∈ 𝐶𝐶 ≠ ∅))
1514adantl 266 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶𝐶 ≠ ∅))
1613, 15sylibrd 162 . . . . 5 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ∅ ∈ 𝐶))
17163adant1 933 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ∅ ∈ 𝐶))
18 oveq2 5547 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵))
1918a1i 9 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝐵 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵)))
20 nnmordi 6119 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
21203adantl2 1072 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
2219, 21orim12d 710 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
2322con3d 571 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
24 simpl3 920 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐶 ∈ ω)
25 simpl1 918 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ ω)
26 nnmcl 6090 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·𝑜 𝐴) ∈ ω)
2724, 25, 26syl2anc 397 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ ω)
28 simpl2 919 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ ω)
29 nnmcl 6090 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·𝑜 𝐵) ∈ ω)
3024, 28, 29syl2anc 397 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐵) ∈ ω)
31 nntri2 6103 . . . . . . . 8 (((𝐶 ·𝑜 𝐴) ∈ ω ∧ (𝐶 ·𝑜 𝐵) ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
3227, 30, 31syl2anc 397 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
33 nntri2 6103 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
3425, 28, 33syl2anc 397 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
3523, 32, 343imtr4d 196 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵))
3635ex 112 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵)))
3736com23 76 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (∅ ∈ 𝐶𝐴𝐵)))
3817, 37mpdd 40 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵))
3938, 17jcad 295 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
405, 39impbid 124 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wo 639  w3a 896   = wceq 1259  wcel 1409  wne 2220  c0 3251  ωcom 4340  (class class class)co 5539   ·𝑜 comu 6029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-oadd 6035  df-omul 6036
This theorem is referenced by:  nnmword  6121  ltmpig  6494
  Copyright terms: Public domain W3C validator