Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxp1 GIF version

Theorem opelxp1 4403
 Description: The first member of an ordered pair of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)

Proof of Theorem opelxp1
StepHypRef Expression
1 opelxp 4400 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
21simplbi 268 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1434  ⟨cop 3409   × cxp 4369 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-opab 3848  df-xp 4377 This theorem is referenced by:  otelxp1  4405  dmxpss  4783  nfvres  5238  ressnop0  5376  swoord1  6201  swoord2  6202
 Copyright terms: Public domain W3C validator