ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5uzti GIF version

Theorem peano5uzti 8404
Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
Assertion
Ref Expression
peano5uzti (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝑁,𝑥

Proof of Theorem peano5uzti
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 3795 . . . . . . . 8 (𝑘 = 𝑛 → (𝑁𝑘𝑁𝑛))
21elrab 2720 . . . . . . 7 (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} ↔ (𝑛 ∈ ℤ ∧ 𝑁𝑛))
32anbi2i 438 . . . . . 6 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)))
4 zcn 8306 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54ad2antrl 467 . . . . . . . 8 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → 𝑛 ∈ ℂ)
6 zcn 8306 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 1cnd 7100 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
86, 7subcld 7384 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
9 npcan 7282 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
105, 8, 9syl2an 277 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
11 ax-1cn 7034 . . . . . . . . . . 11 1 ∈ ℂ
12 subsub 7303 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
1311, 12mp3an3 1232 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
145, 6, 13syl2an 277 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
15 znn0sub 8366 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁𝑛 ↔ (𝑛𝑁) ∈ ℕ0))
1615biimpa 284 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑁𝑛) → (𝑛𝑁) ∈ ℕ0)
1716anasss 385 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑛𝑁) ∈ ℕ0)
1817ancoms 259 . . . . . . . . . . 11 (((𝑛 ∈ ℤ ∧ 𝑁𝑛) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
1918adantll 453 . . . . . . . . . 10 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
20 nn0p1nn 8277 . . . . . . . . . 10 ((𝑛𝑁) ∈ ℕ0 → ((𝑛𝑁) + 1) ∈ ℕ)
2119, 20syl 14 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛𝑁) + 1) ∈ ℕ)
2214, 21eqeltrd 2130 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) ∈ ℕ)
23 simpr 107 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
24 simpll 489 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴))
25 oveq1 5546 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 + (𝑁 − 1)) = (1 + (𝑁 − 1)))
2625eleq1d 2122 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (1 + (𝑁 − 1)) ∈ 𝐴))
2726imbi2d 223 . . . . . . . . . 10 (𝑘 = 1 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴)))
2827imbi2d 223 . . . . . . . . 9 (𝑘 = 1 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))))
29 oveq1 5546 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘 + (𝑁 − 1)) = (𝑛 + (𝑁 − 1)))
3029eleq1d 2122 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (𝑛 + (𝑁 − 1)) ∈ 𝐴))
3130imbi2d 223 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)))
3231imbi2d 223 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴))))
33 oveq1 5546 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝑘 + (𝑁 − 1)) = ((𝑛 + 1) + (𝑁 − 1)))
3433eleq1d 2122 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
3534imbi2d 223 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
3635imbi2d 223 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
37 oveq1 5546 . . . . . . . . . . . 12 (𝑘 = (𝑛 − (𝑁 − 1)) → (𝑘 + (𝑁 − 1)) = ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)))
3837eleq1d 2122 . . . . . . . . . . 11 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))
3938imbi2d 223 . . . . . . . . . 10 (𝑘 = (𝑛 − (𝑁 − 1)) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
4039imbi2d 223 . . . . . . . . 9 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))))
41 1cnd 7100 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
426adantr 265 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁 ∈ ℂ)
4341, 42pncan3d 7387 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) = 𝑁)
44 simprl 491 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁𝐴)
4543, 44eqeltrd 2130 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) ∈ 𝐴)
4645ex 112 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))
47 oveq1 5546 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑛 + (𝑁 − 1)) → (𝑥 + 1) = ((𝑛 + (𝑁 − 1)) + 1))
4847eleq1d 2122 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑛 + (𝑁 − 1)) → ((𝑥 + 1) ∈ 𝐴 ↔ ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
4948rspccv 2670 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
5049ad2antll 468 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
51 simpll 489 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℕ)
5251nncnd 8003 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℂ)
538ad2antlr 466 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑁 − 1) ∈ ℂ)
54 1cnd 7100 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
5552, 53, 54add32d 7241 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) + 1) = ((𝑛 + 1) + (𝑁 − 1)))
5655eleq1d 2122 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5750, 56sylibd 142 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5857ex 112 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
5958a2d 26 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
6059ex 112 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6160a2d 26 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)) → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6228, 32, 36, 40, 46, 61nnind 8005 . . . . . . . 8 ((𝑛 − (𝑁 − 1)) ∈ ℕ → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
6322, 23, 24, 62syl3c 61 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)
6410, 63eqeltrrd 2131 . . . . . 6 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
653, 64sylanb 272 . . . . 5 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
6665expcom 113 . . . 4 (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) → 𝑛𝐴))
6766expdimp 250 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} → 𝑛𝐴))
6867ssrdv 2978 . 2 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
6968ex 112 1 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wral 2323  {crab 2327  wss 2944   class class class wbr 3791  (class class class)co 5539  cc 6944  1c1 6947   + caddc 6949  cle 7119  cmin 7244  cn 7989  0cn0 8238  cz 8301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-ltadd 7057
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-inn 7990  df-n0 8239  df-z 8302
This theorem is referenced by:  peano5uzi  8405  uzind  8407
  Copyright terms: Public domain W3C validator