ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5uzti GIF version

Theorem peano5uzti 9159
Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
Assertion
Ref Expression
peano5uzti (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝑁,𝑥

Proof of Theorem peano5uzti
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 3933 . . . . . . . 8 (𝑘 = 𝑛 → (𝑁𝑘𝑁𝑛))
21elrab 2840 . . . . . . 7 (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} ↔ (𝑛 ∈ ℤ ∧ 𝑁𝑛))
32anbi2i 452 . . . . . 6 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)))
4 zcn 9059 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54ad2antrl 481 . . . . . . . 8 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → 𝑛 ∈ ℂ)
6 zcn 9059 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 1cnd 7782 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
86, 7subcld 8073 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
9 npcan 7971 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
105, 8, 9syl2an 287 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
11 ax-1cn 7713 . . . . . . . . . . 11 1 ∈ ℂ
12 subsub 7992 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
1311, 12mp3an3 1304 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
145, 6, 13syl2an 287 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
15 znn0sub 9119 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁𝑛 ↔ (𝑛𝑁) ∈ ℕ0))
1615biimpa 294 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑁𝑛) → (𝑛𝑁) ∈ ℕ0)
1716anasss 396 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑛𝑁) ∈ ℕ0)
1817ancoms 266 . . . . . . . . . . 11 (((𝑛 ∈ ℤ ∧ 𝑁𝑛) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
1918adantll 467 . . . . . . . . . 10 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
20 nn0p1nn 9016 . . . . . . . . . 10 ((𝑛𝑁) ∈ ℕ0 → ((𝑛𝑁) + 1) ∈ ℕ)
2119, 20syl 14 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛𝑁) + 1) ∈ ℕ)
2214, 21eqeltrd 2216 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) ∈ ℕ)
23 simpr 109 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
24 simpll 518 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴))
25 oveq1 5781 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 + (𝑁 − 1)) = (1 + (𝑁 − 1)))
2625eleq1d 2208 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (1 + (𝑁 − 1)) ∈ 𝐴))
2726imbi2d 229 . . . . . . . . . 10 (𝑘 = 1 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴)))
2827imbi2d 229 . . . . . . . . 9 (𝑘 = 1 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))))
29 oveq1 5781 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘 + (𝑁 − 1)) = (𝑛 + (𝑁 − 1)))
3029eleq1d 2208 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (𝑛 + (𝑁 − 1)) ∈ 𝐴))
3130imbi2d 229 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)))
3231imbi2d 229 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴))))
33 oveq1 5781 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝑘 + (𝑁 − 1)) = ((𝑛 + 1) + (𝑁 − 1)))
3433eleq1d 2208 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
3534imbi2d 229 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
3635imbi2d 229 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
37 oveq1 5781 . . . . . . . . . . . 12 (𝑘 = (𝑛 − (𝑁 − 1)) → (𝑘 + (𝑁 − 1)) = ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)))
3837eleq1d 2208 . . . . . . . . . . 11 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))
3938imbi2d 229 . . . . . . . . . 10 (𝑘 = (𝑛 − (𝑁 − 1)) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
4039imbi2d 229 . . . . . . . . 9 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))))
41 1cnd 7782 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
426adantr 274 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁 ∈ ℂ)
4341, 42pncan3d 8076 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) = 𝑁)
44 simprl 520 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁𝐴)
4543, 44eqeltrd 2216 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) ∈ 𝐴)
4645ex 114 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))
47 oveq1 5781 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑛 + (𝑁 − 1)) → (𝑥 + 1) = ((𝑛 + (𝑁 − 1)) + 1))
4847eleq1d 2208 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑛 + (𝑁 − 1)) → ((𝑥 + 1) ∈ 𝐴 ↔ ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
4948rspccv 2786 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
5049ad2antll 482 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
51 simpll 518 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℕ)
5251nncnd 8734 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℂ)
538ad2antlr 480 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑁 − 1) ∈ ℂ)
54 1cnd 7782 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
5552, 53, 54add32d 7930 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) + 1) = ((𝑛 + 1) + (𝑁 − 1)))
5655eleq1d 2208 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5750, 56sylibd 148 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5857ex 114 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
5958a2d 26 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
6059ex 114 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6160a2d 26 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)) → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6228, 32, 36, 40, 46, 61nnind 8736 . . . . . . . 8 ((𝑛 − (𝑁 − 1)) ∈ ℕ → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
6322, 23, 24, 62syl3c 63 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)
6410, 63eqeltrrd 2217 . . . . . 6 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
653, 64sylanb 282 . . . . 5 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
6665expcom 115 . . . 4 (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) → 𝑛𝐴))
6766expdimp 257 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} → 𝑛𝐴))
6867ssrdv 3103 . 2 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
6968ex 114 1 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  {crab 2420  wss 3071   class class class wbr 3929  (class class class)co 5774  cc 7618  1c1 7621   + caddc 7623  cle 7801  cmin 7933  cn 8720  0cn0 8977  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by:  peano5uzi  9160  uzind  9162
  Copyright terms: Public domain W3C validator