ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncan3 GIF version

Theorem pncan3 7252
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
pncan3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)

Proof of Theorem pncan3
StepHypRef Expression
1 eqid 2054 . 2 (𝐵𝐴) = (𝐵𝐴)
2 simpr 107 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
3 simpl 106 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 subcl 7243 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
54ancoms 259 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
6 subadd 7247 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → ((𝐵𝐴) = (𝐵𝐴) ↔ (𝐴 + (𝐵𝐴)) = 𝐵))
72, 3, 5, 6syl3anc 1144 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵𝐴) = (𝐵𝐴) ↔ (𝐴 + (𝐵𝐴)) = 𝐵))
81, 7mpbii 140 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1257  wcel 1407  (class class class)co 5537  cc 6915   + caddc 6920  cmin 7215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-setind 4287  ax-resscn 7004  ax-1cn 7005  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-addcom 7012  ax-addass 7014  ax-distr 7016  ax-i2m1 7017  ax-0id 7020  ax-rnegex 7021  ax-cnre 7023
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-opab 3844  df-id 4055  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-iota 4892  df-fun 4929  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-sub 7217
This theorem is referenced by:  npcan  7253  nncan  7273  npncan3  7282  negid  7291  pncan3i  7321  pncan3d  7358  subdi  7424  posdif  7494  fzonmapblen  9115  frecfzen2  9333  bernneq2  9502  dvdssubr  10116
  Copyright terms: Public domain W3C validator