ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn GIF version

Theorem pw2dvdslemn 11843
Description: Lemma for pw2dvds 11844. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁
Allowed substitution hint:   𝐴(𝑚)

Proof of Theorem pw2dvdslemn
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 979 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁))
2 oveq2 5782 . . . . . . . 8 (𝑤 = 1 → (2↑𝑤) = (2↑1))
32breq1d 3939 . . . . . . 7 (𝑤 = 1 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁))
43notbid 656 . . . . . 6 (𝑤 = 1 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑1) ∥ 𝑁))
54anbi2d 459 . . . . 5 (𝑤 = 1 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁)))
65imbi1d 230 . . . 4 (𝑤 = 1 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
7 oveq2 5782 . . . . . . . 8 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
87breq1d 3939 . . . . . . 7 (𝑤 = 𝑘 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
98notbid 656 . . . . . 6 (𝑤 = 𝑘 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝑘) ∥ 𝑁))
109anbi2d 459 . . . . 5 (𝑤 = 𝑘 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁)))
1110imbi1d 230 . . . 4 (𝑤 = 𝑘 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
12 oveq2 5782 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1312breq1d 3939 . . . . . . 7 (𝑤 = (𝑘 + 1) → ((2↑𝑤) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
1413notbid 656 . . . . . 6 (𝑤 = (𝑘 + 1) → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
1514anbi2d 459 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
1615imbi1d 230 . . . 4 (𝑤 = (𝑘 + 1) → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
17 oveq2 5782 . . . . . . . 8 (𝑤 = 𝐴 → (2↑𝑤) = (2↑𝐴))
1817breq1d 3939 . . . . . . 7 (𝑤 = 𝐴 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝐴) ∥ 𝑁))
1918notbid 656 . . . . . 6 (𝑤 = 𝐴 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝐴) ∥ 𝑁))
2019anbi2d 459 . . . . 5 (𝑤 = 𝐴 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁)))
2120imbi1d 230 . . . 4 (𝑤 = 𝐴 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
22 0nn0 8992 . . . . . 6 0 ∈ ℕ0
2322a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 0 ∈ ℕ0)
24 oveq2 5782 . . . . . . . 8 (𝑚 = 0 → (2↑𝑚) = (2↑0))
2524breq1d 3939 . . . . . . 7 (𝑚 = 0 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑0) ∥ 𝑁))
26 oveq1 5781 . . . . . . . . . 10 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
2726oveq2d 5790 . . . . . . . . 9 (𝑚 = 0 → (2↑(𝑚 + 1)) = (2↑(0 + 1)))
2827breq1d 3939 . . . . . . . 8 (𝑚 = 0 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(0 + 1)) ∥ 𝑁))
2928notbid 656 . . . . . . 7 (𝑚 = 0 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(0 + 1)) ∥ 𝑁))
3025, 29anbi12d 464 . . . . . 6 (𝑚 = 0 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
3130adantl 275 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) ∧ 𝑚 = 0) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
32 2cnd 8793 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 2 ∈ ℂ)
3332exp0d 10418 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) = 1)
34 simpl 108 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℕ)
3534nnzd 9172 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℤ)
36 1dvds 11507 . . . . . . . 8 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3735, 36syl 14 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 1 ∥ 𝑁)
3833, 37eqbrtrd 3950 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) ∥ 𝑁)
39 simpr 109 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑1) ∥ 𝑁)
40 0p1e1 8834 . . . . . . . . 9 (0 + 1) = 1
4140oveq2i 5785 . . . . . . . 8 (2↑(0 + 1)) = (2↑1)
4241breq1i 3936 . . . . . . 7 ((2↑(0 + 1)) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁)
4339, 42sylnibr 666 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑(0 + 1)) ∥ 𝑁)
4438, 43jca 304 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁))
4523, 31, 44rspcedvd 2795 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
46 simpll 518 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ)
4746nnnn0d 9030 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ0)
48 oveq2 5782 . . . . . . . . . . 11 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
4948breq1d 3939 . . . . . . . . . 10 (𝑚 = 𝑘 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
50 oveq1 5781 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
5150oveq2d 5790 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (2↑(𝑚 + 1)) = (2↑(𝑘 + 1)))
5251breq1d 3939 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
5352notbid 656 . . . . . . . . . 10 (𝑚 = 𝑘 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5449, 53anbi12d 464 . . . . . . . . 9 (𝑚 = 𝑘 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
5554adantl 275 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) ∧ 𝑚 = 𝑘) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
56 simpr 109 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → (2↑𝑘) ∥ 𝑁)
57 simplrr 525 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ¬ (2↑(𝑘 + 1)) ∥ 𝑁)
5856, 57jca 304 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5947, 55, 58rspcedvd 2795 . . . . . . 7 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
6059adantllr 472 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
61 simprl 520 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℕ)
6261anim1i 338 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁))
63 simpllr 523 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
6462, 63mpd 13 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
65 2nn 8881 . . . . . . . . 9 2 ∈ ℕ
66 simpll 518 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ)
6766nnnn0d 9030 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ0)
68 nnexpcl 10306 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
6965, 67, 68sylancr 410 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → (2↑𝑘) ∈ ℕ)
7061nnzd 9172 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℤ)
71 dvdsdc 11501 . . . . . . . 8 (((2↑𝑘) ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID (2↑𝑘) ∥ 𝑁)
7269, 70, 71syl2anc 408 . . . . . . 7 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → DECID (2↑𝑘) ∥ 𝑁)
73 exmiddc 821 . . . . . . 7 (DECID (2↑𝑘) ∥ 𝑁 → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7472, 73syl 14 . . . . . 6 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7560, 64, 74mpjaodan 787 . . . . 5 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
7675exp31 361 . . . 4 (𝑘 ∈ ℕ → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) → ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
776, 11, 16, 21, 45, 76nnind 8736 . . 3 (𝐴 ∈ ℕ → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
78773ad2ant2 1003 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
791, 78mpd 13 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  (class class class)co 5774  0cc0 7620  1c1 7621   + caddc 7623  cn 8720  2c2 8771  0cn0 8977  cz 9054  cexp 10292  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-dvds 11494
This theorem is referenced by:  pw2dvds  11844
  Copyright terms: Public domain W3C validator