![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtrd | GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrd.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrd | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrd.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | eqbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 3803 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbird 165 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 class class class wbr 3793 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-sn 3412 df-pr 3413 df-op 3415 df-br 3794 |
This theorem is referenced by: eqbrtrrd 3815 dif1en 6414 prarloclemcalc 6754 ltexprlemopu 6855 recexprlemloc 6883 caucvgprprlemloccalc 6936 mulle0r 8089 lbinfle 8095 divge1 8881 xltnegi 8978 ubmelm1fzo 9312 qbtwnrelemcalc 9342 qbtwnxr 9344 ceiqm1l 9393 ceilqm1lt 9394 ceilqle 9396 modqlt 9415 modqeqmodmin 9476 addmodlteq 9480 bernneq 9690 faclbnd2 9766 resqrexlemdec 10035 resqrexlemcalc2 10039 resqrexlemglsq 10046 resqrexlemga 10047 abslt 10112 amgm2 10142 icodiamlt 10204 maxabsle 10228 maxltsup 10242 minmax 10250 min1inf 10251 min2inf 10252 climconst 10267 iserclim0 10282 mulcn2 10289 iiserex 10315 climlec2 10317 iserige0 10319 climcau 10322 climcvg1nlem 10324 mulgcd 10549 eucalglt 10583 lcmledvds 10596 mulgcddvds 10620 prmind2 10646 pw2dvdslemn 10687 pw2dvdseulemle 10689 oddpwdclemdvds 10692 sqrt2irrap 10702 qdencn 10943 |
Copyright terms: Public domain | W3C validator |