ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29uz GIF version

Theorem r19.29uz 10764
Description: A version of 19.29 1599 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.29uz ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem r19.29uz
StepHypRef Expression
1 rexuz3.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
21uztrn2 9343 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32ex 114 . . . . . . 7 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
4 pm3.2 138 . . . . . . . 8 (𝜑 → (𝜓 → (𝜑𝜓)))
54a1i 9 . . . . . . 7 (𝑗𝑍 → (𝜑 → (𝜓 → (𝜑𝜓))))
63, 5imim12d 74 . . . . . 6 (𝑗𝑍 → ((𝑘𝑍𝜑) → (𝑘 ∈ (ℤ𝑗) → (𝜓 → (𝜑𝜓)))))
76ralimdv2 2502 . . . . 5 (𝑗𝑍 → (∀𝑘𝑍 𝜑 → ∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓))))
87impcom 124 . . . 4 ((∀𝑘𝑍 𝜑𝑗𝑍) → ∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓)))
9 ralim 2491 . . . 4 (∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓)) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
108, 9syl 14 . . 3 ((∀𝑘𝑍 𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
1110reximdva 2534 . 2 (∀𝑘𝑍 𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
1211imp 123 1 ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  wrex 2417  cfv 5123  cuz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltwlin 7733
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-neg 7936  df-z 9055  df-uz 9327
This theorem is referenced by:  climcaucn  11120
  Copyright terms: Public domain W3C validator