![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1462 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | ralrimi 2433 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ∀wral 2349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-ral 2354 |
This theorem is referenced by: ralrimiva 2435 ralrimivw 2436 ralrimivv 2443 r19.27av 2493 rr19.3v 2734 rabssdv 3075 rzal 3346 trin 3893 class2seteq 3945 ralxfrALT 4225 ssorduni 4239 ordsucim 4252 onintonm 4269 issref 4737 funimaexglem 5013 poxp 5884 rdgss 6032 dom2lem 6319 supisoti 6482 ordiso2 6505 uzind 8539 zindd 8546 lbzbi 8782 icoshftf1o 9089 maxabslemval 10232 alzdvds 10399 bj-nntrans2 10905 bj-inf2vnlem1 10923 |
Copyright terms: Public domain | W3C validator |