ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsupp GIF version

Theorem rexsupp 5318
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
rexsupp (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑍(𝑥)

Proof of Theorem rexsupp
StepHypRef Expression
1 elpreima 5313 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
2 funfvex 5219 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
32funfni 5026 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
43biantrurd 293 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝑍 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍)))
5 eldifsn 3522 . . . . . . 7 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍))
64, 5syl6rbbr 192 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑥) ≠ 𝑍))
76pm5.32da 433 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
81, 7bitrd 181 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
98anbi1d 446 . . 3 (𝐹 Fn 𝐴 → ((𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑)))
10 anass 387 . . 3 (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ≠ 𝑍𝜑)))
119, 10syl6bb 189 . 2 (𝐹 Fn 𝐴 → ((𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ≠ 𝑍𝜑))))
1211rexbidv2 2346 1 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wcel 1409  wne 2220  wrex 2324  Vcvv 2574  cdif 2941  {csn 3402  ccnv 4371  cima 4375   Fn wfn 4924  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-fv 4937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator