![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snssd | GIF version |
Description: The singleton of an element of a class is a subset of the class (deduction rule). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | snssg 3541 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
4 | 1, 3 | mpbid 145 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∈ wcel 1434 ⊆ wss 2982 {csn 3416 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-in 2988 df-ss 2995 df-sn 3422 |
This theorem is referenced by: ecinxp 6268 xpdom3m 6399 ac6sfi 6454 undifdc 6468 en2other2 6574 un0addcl 8440 un0mulcl 8441 fseq1p1m1 9239 phicl2 10797 bj-omtrans 11018 |
Copyright terms: Public domain | W3C validator |