ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem7 GIF version

Theorem tfrlem7 6214
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem7 Fun recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem7
Dummy variables 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem6 6213 . 2 Rel recs(𝐹)
31recsfval 6212 . . . . . . . . 9 recs(𝐹) = 𝐴
43eleq2i 2206 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐴)
5 eluni 3739 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
64, 5bitri 183 . . . . . . 7 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
73eleq2i 2206 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐴)
8 eluni 3739 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ 𝐴 ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
97, 8bitri 183 . . . . . . 7 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
106, 9anbi12i 455 . . . . . 6 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
11 eeanv 1904 . . . . . 6 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
1210, 11bitr4i 186 . . . . 5 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ ∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)))
13 df-br 3930 . . . . . . . . 9 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
14 df-br 3930 . . . . . . . . 9 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1513, 14anbi12i 455 . . . . . . . 8 ((𝑥𝑔𝑢𝑥𝑣) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ))
161tfrlem5 6211 . . . . . . . . 9 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1716impcom 124 . . . . . . . 8 (((𝑥𝑔𝑢𝑥𝑣) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1815, 17sylanbr 283 . . . . . . 7 (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1918an4s 577 . . . . . 6 (((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2019exlimivv 1868 . . . . 5 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2112, 20sylbi 120 . . . 4 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2221ax-gen 1425 . . 3 𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2322gen2 1426 . 2 𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
24 dffun4 5134 . 2 (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)))
252, 23, 24mpbir2an 926 1 Fun recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1329   = wceq 1331  wex 1468  wcel 1480  {cab 2125  wral 2416  wrex 2417  cop 3530   cuni 3736   class class class wbr 3929  Oncon0 4285  cres 4541  Rel wrel 4544  Fun wfun 5117   Fn wfn 5118  cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-recs 6202
This theorem is referenced by:  tfrlem9  6216  tfrfun  6217  tfrlemibfn  6225  tfrlemiubacc  6227  tfri1d  6232  rdgfun  6270
  Copyright terms: Public domain W3C validator