![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elixp | Structured version Visualization version GIF version |
Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.) |
Ref | Expression |
---|---|
0elixp | ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4942 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snid 4353 | . 2 ⊢ ∅ ∈ {∅} |
3 | ixp0x 8102 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} | |
4 | 2, 3 | eleqtrri 2838 | 1 ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ∅c0 4058 {csn 4321 Xcixp 8074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-fun 6051 df-fn 6052 df-ixp 8075 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |