Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2rexreu Structured version   Visualization version   GIF version

Theorem 2rexreu 40515
Description: Double restricted existential uniqueness implies double restricted uniqueness quantification, analogous to 2exeu 2548. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
Assertion
Ref Expression
2rexreu ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑥𝐴 ∃!𝑦𝐵 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2rexreu
StepHypRef Expression
1 reurmo 3153 . . . 4 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴𝑦𝐵 𝜑)
2 reurex 3152 . . . . 5 (∃!𝑦𝐵 𝜑 → ∃𝑦𝐵 𝜑)
32rmoimi 40506 . . . 4 (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)
41, 3syl 17 . . 3 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)
5 2reurex 40511 . . 3 (∃!𝑦𝐵𝑥𝐴 𝜑 → ∃𝑥𝐴 ∃!𝑦𝐵 𝜑)
64, 5anim12ci 590 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → (∃𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑))
7 reu5 3151 . 2 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑))
86, 7sylibr 224 1 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑥𝐴 ∃!𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wrex 2908  ∃!wreu 2909  ∃*wrmo 2910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915
This theorem is referenced by:  2reu1  40516  2reu2  40517  2reu3  40518
  Copyright terms: Public domain W3C validator