Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq3lem Structured version   Visualization version   GIF version

Theorem aceq3lem 8887
 Description: Lemma for dfac3 8888. (Contributed by NM, 2-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
aceq3lem.1 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢}))
Assertion
Ref Expression
aceq3lem (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑢,𝑓
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓)

Proof of Theorem aceq3lem
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3189 . . . . . 6 𝑦 ∈ V
21rnex 7047 . . . . 5 ran 𝑦 ∈ V
32pwex 4808 . . . 4 𝒫 ran 𝑦 ∈ V
4 raleq 3127 . . . . 5 (𝑥 = 𝒫 ran 𝑦 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
54exbidv 1847 . . . 4 (𝑥 = 𝒫 ran 𝑦 → (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
63, 5spcv 3285 . . 3 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
7 aceq3lem.1 . . . . . . 7 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢}))
8 df-mpt 4675 . . . . . . 7 (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢})) = {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))}
97, 8eqtri 2643 . . . . . 6 𝐹 = {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))}
10 vex 3189 . . . . . . . . . . . . . . 15 𝑤 ∈ V
1110eldm 5281 . . . . . . . . . . . . . 14 (𝑤 ∈ dom 𝑦 ↔ ∃𝑢 𝑤𝑦𝑢)
12 abn0 3928 . . . . . . . . . . . . . 14 ({𝑢𝑤𝑦𝑢} ≠ ∅ ↔ ∃𝑢 𝑤𝑦𝑢)
1311, 12bitr4i 267 . . . . . . . . . . . . 13 (𝑤 ∈ dom 𝑦 ↔ {𝑢𝑤𝑦𝑢} ≠ ∅)
14 vex 3189 . . . . . . . . . . . . . . . . 17 𝑢 ∈ V
1510, 14brelrn 5316 . . . . . . . . . . . . . . . 16 (𝑤𝑦𝑢𝑢 ∈ ran 𝑦)
1615abssi 3656 . . . . . . . . . . . . . . 15 {𝑢𝑤𝑦𝑢} ⊆ ran 𝑦
172elpw2 4788 . . . . . . . . . . . . . . 15 ({𝑢𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦 ↔ {𝑢𝑤𝑦𝑢} ⊆ ran 𝑦)
1816, 17mpbir 221 . . . . . . . . . . . . . 14 {𝑢𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦
19 neeq1 2852 . . . . . . . . . . . . . . . 16 (𝑧 = {𝑢𝑤𝑦𝑢} → (𝑧 ≠ ∅ ↔ {𝑢𝑤𝑦𝑢} ≠ ∅))
20 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑧 = {𝑢𝑤𝑦𝑢} → (𝑓𝑧) = (𝑓‘{𝑢𝑤𝑦𝑢}))
21 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = {𝑢𝑤𝑦𝑢} → 𝑧 = {𝑢𝑤𝑦𝑢})
2220, 21eleq12d 2692 . . . . . . . . . . . . . . . 16 (𝑧 = {𝑢𝑤𝑦𝑢} → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2319, 22imbi12d 334 . . . . . . . . . . . . . . 15 (𝑧 = {𝑢𝑤𝑦𝑢} → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})))
2423rspcv 3291 . . . . . . . . . . . . . 14 ({𝑢𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦 → (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})))
2518, 24ax-mp 5 . . . . . . . . . . . . 13 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2613, 25syl5bi 232 . . . . . . . . . . . 12 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑤 ∈ dom 𝑦 → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2726imp 445 . . . . . . . . . . 11 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})
28 fvex 6158 . . . . . . . . . . . 12 (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ V
29 breq2 4617 . . . . . . . . . . . 12 (𝑧 = (𝑓‘{𝑢𝑤𝑦𝑢}) → (𝑤𝑦𝑧𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢})))
30 breq2 4617 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝑤𝑦𝑢𝑤𝑦𝑧))
3130cbvabv 2744 . . . . . . . . . . . 12 {𝑢𝑤𝑦𝑢} = {𝑧𝑤𝑦𝑧}
3228, 29, 31elab2 3337 . . . . . . . . . . 11 ((𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢} ↔ 𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢}))
3327, 32sylib 208 . . . . . . . . . 10 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → 𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢}))
34 breq2 4617 . . . . . . . . . 10 ( = (𝑓‘{𝑢𝑤𝑦𝑢}) → (𝑤𝑦𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢})))
3533, 34syl5ibrcom 237 . . . . . . . . 9 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → ( = (𝑓‘{𝑢𝑤𝑦𝑢}) → 𝑤𝑦))
3635expimpd 628 . . . . . . . 8 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢})) → 𝑤𝑦))
3736ssopab2dv 4964 . . . . . . 7 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))} ⊆ {⟨𝑤, ⟩ ∣ 𝑤𝑦})
38 opabss 4676 . . . . . . 7 {⟨𝑤, ⟩ ∣ 𝑤𝑦} ⊆ 𝑦
3937, 38syl6ss 3595 . . . . . 6 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))} ⊆ 𝑦)
409, 39syl5eqss 3628 . . . . 5 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝐹𝑦)
4128, 7fnmpti 5979 . . . . 5 𝐹 Fn dom 𝑦
421ssex 4762 . . . . . . 7 (𝐹𝑦𝐹 ∈ V)
4342adantr 481 . . . . . 6 ((𝐹𝑦𝐹 Fn dom 𝑦) → 𝐹 ∈ V)
44 sseq1 3605 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔𝑦𝐹𝑦))
45 fneq1 5937 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 Fn dom 𝑦𝐹 Fn dom 𝑦))
4644, 45anbi12d 746 . . . . . . 7 (𝑔 = 𝐹 → ((𝑔𝑦𝑔 Fn dom 𝑦) ↔ (𝐹𝑦𝐹 Fn dom 𝑦)))
4746spcegv 3280 . . . . . 6 (𝐹 ∈ V → ((𝐹𝑦𝐹 Fn dom 𝑦) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦)))
4843, 47mpcom 38 . . . . 5 ((𝐹𝑦𝐹 Fn dom 𝑦) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
4940, 41, 48sylancl 693 . . . 4 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
5049exlimiv 1855 . . 3 (∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
516, 50syl 17 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
52 sseq1 3605 . . . 4 (𝑔 = 𝑓 → (𝑔𝑦𝑓𝑦))
53 fneq1 5937 . . . 4 (𝑔 = 𝑓 → (𝑔 Fn dom 𝑦𝑓 Fn dom 𝑦))
5452, 53anbi12d 746 . . 3 (𝑔 = 𝑓 → ((𝑔𝑦𝑔 Fn dom 𝑦) ↔ (𝑓𝑦𝑓 Fn dom 𝑦)))
5554cbvexv 2274 . 2 (∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦) ↔ ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
5651, 55sylib 208 1 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∀wal 1478   = wceq 1480  ∃wex 1701   ∈ wcel 1987  {cab 2607   ≠ wne 2790  ∀wral 2907  Vcvv 3186   ⊆ wss 3555  ∅c0 3891  𝒫 cpw 4130   class class class wbr 4613  {copab 4672   ↦ cmpt 4673  dom cdm 5074  ran crn 5075   Fn wfn 5842  ‘cfv 5847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fn 5850  df-fv 5855 This theorem is referenced by:  dfac3  8888
 Copyright terms: Public domain W3C validator