Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpexg Structured version   Visualization version   GIF version

Theorem altxpexg 32069
 Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpexg ((𝐴𝑉𝐵𝑊) → (𝐴 ×× 𝐵) ∈ V)

Proof of Theorem altxpexg
StepHypRef Expression
1 altxpsspw 32068 . 2 (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)
2 pwexg 4848 . . . 4 (𝐵𝑊 → 𝒫 𝐵 ∈ V)
3 unexg 6956 . . . 4 ((𝐴𝑉 ∧ 𝒫 𝐵 ∈ V) → (𝐴 ∪ 𝒫 𝐵) ∈ V)
42, 3sylan2 491 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴 ∪ 𝒫 𝐵) ∈ V)
5 pwexg 4848 . . 3 ((𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
6 pwexg 4848 . . 3 (𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
74, 5, 63syl 18 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
8 ssexg 4802 . 2 (((𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) → (𝐴 ×× 𝐵) ∈ V)
91, 7, 8sylancr 695 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ×× 𝐵) ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∈ wcel 1989  Vcvv 3198   ∪ cun 3570   ⊆ wss 3572  𝒫 cpw 4156   ×× caltxp 32048 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-pw 4158  df-sn 4176  df-pr 4178  df-uni 4435  df-altop 32049  df-altxp 32050 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator