MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwdmcd Structured version   Visualization version   GIF version

Theorem arwdmcd 17312
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
arwdmcd (𝐹𝐴𝐹 = ⟨(doma𝐹), (coda𝐹), (2nd𝐹)⟩)

Proof of Theorem arwdmcd
StepHypRef Expression
1 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
2 eqid 2821 . . 3 (Homa𝐶) = (Homa𝐶)
31, 2arwhoma 17305 . 2 (𝐹𝐴𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)))
42homadmcd 17302 . 2 (𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)) → 𝐹 = ⟨(doma𝐹), (coda𝐹), (2nd𝐹)⟩)
53, 4syl 17 1 (𝐹𝐴𝐹 = ⟨(doma𝐹), (coda𝐹), (2nd𝐹)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cotp 4575  cfv 6355  (class class class)co 7156  2nd c2nd 7688  domacdoma 17280  codaccoda 17281  Arrowcarw 17282  Homachoma 17283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-ot 4576  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-1st 7689  df-2nd 7690  df-doma 17284  df-coda 17285  df-homa 17286  df-arw 17287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator