![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpimasn | Structured version Visualization version GIF version |
Description: The image of a singleton, general case. [Change and relabel xpimasn 5738 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-xpimasn | ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpima 5735 | . 2 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) | |
2 | disjsn 4391 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
3 | eqid 2761 | . . 3 ⊢ 𝐵 = 𝐵 | |
4 | 2, 3 | ifbieq2i 4255 | . 2 ⊢ if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) = if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) |
5 | ifnot 4278 | . 2 ⊢ if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | |
6 | 1, 4, 5 | 3eqtri 2787 | 1 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ∈ wcel 2140 ∩ cin 3715 ∅c0 4059 ifcif 4231 {csn 4322 × cxp 5265 “ cima 5270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-xp 5273 df-rel 5274 df-cnv 5275 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 |
This theorem is referenced by: bj-xpima1sn 33268 bj-xpima2sn 33270 |
Copyright terms: Public domain | W3C validator |