MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima Structured version   Visualization version   GIF version

Theorem xpima 6039
Description: Direct image by a Cartesian product. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
xpima ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)

Proof of Theorem xpima
StepHypRef Expression
1 exmid 891 . . 3 ((𝐴𝐶) = ∅ ∨ ¬ (𝐴𝐶) = ∅)
2 df-ima 5568 . . . . . . . 8 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
3 df-res 5567 . . . . . . . . 9 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
43rneqi 5807 . . . . . . . 8 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
52, 4eqtri 2844 . . . . . . 7 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
6 inxp 5703 . . . . . . . 8 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
76rneqi 5807 . . . . . . 7 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
8 inv1 4348 . . . . . . . . 9 (𝐵 ∩ V) = 𝐵
98xpeq2i 5582 . . . . . . . 8 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐴𝐶) × 𝐵)
109rneqi 5807 . . . . . . 7 ran ((𝐴𝐶) × (𝐵 ∩ V)) = ran ((𝐴𝐶) × 𝐵)
115, 7, 103eqtri 2848 . . . . . 6 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × 𝐵)
12 xpeq1 5569 . . . . . . . . 9 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × 𝐵) = (∅ × 𝐵))
13 0xp 5649 . . . . . . . . 9 (∅ × 𝐵) = ∅
1412, 13syl6eq 2872 . . . . . . . 8 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × 𝐵) = ∅)
1514rneqd 5808 . . . . . . 7 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = ran ∅)
16 rn0 5796 . . . . . . 7 ran ∅ = ∅
1715, 16syl6eq 2872 . . . . . 6 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = ∅)
1811, 17syl5eq 2868 . . . . 5 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
1918ancli 551 . . . 4 ((𝐴𝐶) = ∅ → ((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅))
20 df-ne 3017 . . . . . . 7 ((𝐴𝐶) ≠ ∅ ↔ ¬ (𝐴𝐶) = ∅)
21 rnxp 6027 . . . . . . 7 ((𝐴𝐶) ≠ ∅ → ran ((𝐴𝐶) × 𝐵) = 𝐵)
2220, 21sylbir 237 . . . . . 6 (¬ (𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = 𝐵)
2311, 22syl5eq 2868 . . . . 5 (¬ (𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
2423ancli 551 . . . 4 (¬ (𝐴𝐶) = ∅ → (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵))
2519, 24orim12i 905 . . 3 (((𝐴𝐶) = ∅ ∨ ¬ (𝐴𝐶) = ∅) → (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵)))
261, 25ax-mp 5 . 2 (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵))
27 eqif 4507 . 2 (((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵) ↔ (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵)))
2826, 27mpbir 233 1 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  wo 843   = wceq 1537  wne 3016  Vcvv 3494  cin 3935  c0 4291  ifcif 4467   × cxp 5553  ran crn 5556  cres 5557  cima 5558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568
This theorem is referenced by:  xpima1  6040  xpima2  6041  imadifxp  30351  bj-xpimasn  34270
  Copyright terms: Public domain W3C validator