Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1519 Structured version   Visualization version   GIF version

Theorem bnj1519 31118
Description: Technical lemma for bnj1500 31121. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1519.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1519.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1519.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1519.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj1519 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝐴,𝑑   𝐺,𝑑   𝑅,𝑑   𝑥,𝑑
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑥,𝑓,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑥,𝑓)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑥,𝑓)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1519
StepHypRef Expression
1 bnj1519.4 . . . . 5 𝐹 = 𝐶
2 bnj1519.3 . . . . . . 7 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
3 nfre1 3004 . . . . . . . 8 𝑑𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))
43nfab 2768 . . . . . . 7 𝑑{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
52, 4nfcxfr 2761 . . . . . 6 𝑑𝐶
65nfuni 4440 . . . . 5 𝑑 𝐶
71, 6nfcxfr 2761 . . . 4 𝑑𝐹
8 nfcv 2763 . . . 4 𝑑𝑥
97, 8nffv 6196 . . 3 𝑑(𝐹𝑥)
10 nfcv 2763 . . . 4 𝑑𝐺
11 nfcv 2763 . . . . . 6 𝑑 pred(𝑥, 𝐴, 𝑅)
127, 11nfres 5396 . . . . 5 𝑑(𝐹 ↾ pred(𝑥, 𝐴, 𝑅))
138, 12nfop 4416 . . . 4 𝑑𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1410, 13nffv 6196 . . 3 𝑑(𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
159, 14nfeq 2775 . 2 𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
1615nf5ri 2064 1 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1480   = wceq 1482  {cab 2607  wral 2911  wrex 2912  wss 3572  cop 4181   cuni 4434  cres 5114   Fn wfn 5881  cfv 5886   predc-bnj14 30739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-xp 5118  df-res 5124  df-iota 5849  df-fv 5894
This theorem is referenced by:  bnj1501  31120
  Copyright terms: Public domain W3C validator