Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1501 Structured version   Visualization version   GIF version

Theorem bnj1501 32339
Description: Technical lemma for bnj1500 32340. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1501.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1501.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1501.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1501.4 𝐹 = 𝐶
bnj1501.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
bnj1501.6 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
bnj1501.7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
Assertion
Ref Expression
bnj1501 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥   𝑌,𝑑   𝜑,𝑑,𝑓
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓)

Proof of Theorem bnj1501
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1501.5 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
21simprbi 499 . . . . . . . 8 (𝜑𝑥𝐴)
3 bnj1501.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4 bnj1501.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
5 bnj1501.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
6 bnj1501.4 . . . . . . . . . . 11 𝐹 = 𝐶
73, 4, 5, 6bnj60 32334 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
8 fndm 6455 . . . . . . . . . 10 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
97, 8syl 17 . . . . . . . . 9 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
101, 9bnj832 32029 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
112, 10eleqtrrd 2916 . . . . . . 7 (𝜑𝑥 ∈ dom 𝐹)
126dmeqi 5773 . . . . . . . 8 dom 𝐹 = dom 𝐶
135bnj1317 32093 . . . . . . . . 9 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
1413bnj1400 32107 . . . . . . . 8 dom 𝐶 = 𝑓𝐶 dom 𝑓
1512, 14eqtri 2844 . . . . . . 7 dom 𝐹 = 𝑓𝐶 dom 𝑓
1611, 15eleqtrdi 2923 . . . . . 6 (𝜑𝑥 𝑓𝐶 dom 𝑓)
1716bnj1405 32108 . . . . 5 (𝜑 → ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
18 bnj1501.6 . . . . 5 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
1917, 18bnj1209 32068 . . . 4 (𝜑 → ∃𝑓𝜓)
205bnj1436 32111 . . . . . . . . . 10 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
2120bnj1299 32090 . . . . . . . . 9 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
22 fndm 6455 . . . . . . . . 9 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
2321, 22bnj31 31989 . . . . . . . 8 (𝑓𝐶 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
2418, 23bnj836 32031 . . . . . . 7 (𝜓 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
25 bnj1501.7 . . . . . . 7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
263, 4, 5, 6, 1, 18bnj1518 32336 . . . . . . 7 (𝜓 → ∀𝑑𝜓)
2724, 25, 26bnj1521 32123 . . . . . 6 (𝜓 → ∃𝑑𝜒)
287bnj930 32041 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴 → Fun 𝐹)
291, 28bnj832 32029 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
3018, 29bnj835 32030 . . . . . . . . . 10 (𝜓 → Fun 𝐹)
31 elssuni 4868 . . . . . . . . . . . 12 (𝑓𝐶𝑓 𝐶)
3231, 6sseqtrrdi 4018 . . . . . . . . . . 11 (𝑓𝐶𝑓𝐹)
3318, 32bnj836 32031 . . . . . . . . . 10 (𝜓𝑓𝐹)
3418simp3bi 1143 . . . . . . . . . 10 (𝜓𝑥 ∈ dom 𝑓)
3530, 33, 34bnj1502 32120 . . . . . . . . 9 (𝜓 → (𝐹𝑥) = (𝑓𝑥))
363, 4, 5bnj1514 32335 . . . . . . . . . . 11 (𝑓𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3718, 36bnj836 32031 . . . . . . . . . 10 (𝜓 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3837, 34bnj1294 32089 . . . . . . . . 9 (𝜓 → (𝑓𝑥) = (𝐺𝑌))
3935, 38eqtrd 2856 . . . . . . . 8 (𝜓 → (𝐹𝑥) = (𝐺𝑌))
4025, 39bnj835 32030 . . . . . . 7 (𝜒 → (𝐹𝑥) = (𝐺𝑌))
4125, 30bnj835 32030 . . . . . . . . . . 11 (𝜒 → Fun 𝐹)
4225, 33bnj835 32030 . . . . . . . . . . 11 (𝜒𝑓𝐹)
433bnj1517 32122 . . . . . . . . . . . . . 14 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4425, 43bnj836 32031 . . . . . . . . . . . . 13 (𝜒 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4525, 34bnj835 32030 . . . . . . . . . . . . . 14 (𝜒𝑥 ∈ dom 𝑓)
4625simp3bi 1143 . . . . . . . . . . . . . 14 (𝜒 → dom 𝑓 = 𝑑)
4745, 46eleqtrd 2915 . . . . . . . . . . . . 13 (𝜒𝑥𝑑)
4844, 47bnj1294 32089 . . . . . . . . . . . 12 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4948, 46sseqtrrd 4008 . . . . . . . . . . 11 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑓)
5041, 42, 49bnj1503 32121 . . . . . . . . . 10 (𝜒 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)))
5150opeq2d 4810 . . . . . . . . 9 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
5251, 4syl6eqr 2874 . . . . . . . 8 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = 𝑌)
5352fveq2d 6674 . . . . . . 7 (𝜒 → (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺𝑌))
5440, 53eqtr4d 2859 . . . . . 6 (𝜒 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5527, 54bnj593 32016 . . . . 5 (𝜓 → ∃𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
563, 4, 5, 6bnj1519 32337 . . . . 5 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5755, 56bnj1397 32106 . . . 4 (𝜓 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5819, 57bnj593 32016 . . 3 (𝜑 → ∃𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
593, 4, 5, 6bnj1520 32338 . . 3 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
6058, 59bnj1397 32106 . 2 (𝜑 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
611, 60bnj1459 32115 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  wss 3936  cop 4573   cuni 4838   ciun 4919  dom cdm 5555  cres 5557  Fun wfun 6349   Fn wfn 6350  cfv 6355   predc-bnj14 31958   FrSe w-bnj15 31962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1o 8102  df-bnj17 31957  df-bnj14 31959  df-bnj13 31961  df-bnj15 31963  df-bnj18 31965  df-bnj19 31967
This theorem is referenced by:  bnj1500  32340
  Copyright terms: Public domain W3C validator